

Security review of proximity technologies: beacons and physical web

Renaud Lifchitz (renaud.lifchitz@digitalsecurity.fr) BlackAlps- Switzerland - November 15-16, 2017

digital security

Outline

- Introduction to proximity technologies
- iBeacon security
- Physical Web security
- Web Bluetooth security

Speaker's bio

- French senior security engineer
- Main activities:

- Penetration testing & security audits
- Security research
- Security trainings
- Significant security studies about: contactless debit cards, GSM geolocation, blockchain, RSA signatures, ZigBee, Sigfox, LoRaWAN, Vigik access control and quantum computation

https://speakerdeck.com/rlifchitz

About Digital Security

P.4

- Company founded in 2015 by a group of experts with the support of Econocom Group
- Provides advanced services in security audit, consulting and support
- Our expertise combine traditional security for infrastructure and application, and skills oriented to the ecosystem of connected objects
- Has created the CERT-UBIK, first European CERT[™] specialized on **IoT security** (OSIDO monitoring service)
- Has a laboratory for studying new technologies, protocols and specific operating systems

Introduction to proximity technologies

digital security

Use cases (1/2)

- Indoor location
- Proximity marketing
- Check-in coupons
- Contactless payments
- Contextual information
- Access control

Use cases (2/2)

"A Guide to Bluetooth Beacons", september 2014, GSMA

P. 7 Digital Security - Security review of proximity technologies: beacons and physical web

iBeacon

- Apple technology
- Based on Bluetooth Low Energy (Bluetooth >= 4.0)
- Broadcasts
- Applications can recognize the broadcasted UUID and react accordingly

How one beacon works

A beacon on a store wall sends a unique signal via Bluetooth Low Energy. A customer's smartphone picks up the signal.

A beacon-enabled retailer's app on the phone sends the signal to an online platform.

-

The customer receives a mobile coupon.

Graphic: Catherine Payne, NAA

The app formats the information.

nation.

EddyStone

- Google open source format, Apache v2.0 license: https://github.com/google/eddystone
- Also based on BLE broadcasts
- Unlike iBeacon, 4 different frame formats:
 - UID: a unique 16-byte Beacon ID composed of a 10-byte namespace and a 6-byte instance
 - URL: a URL using a compressed encoding format
 - TLM: telemetry information about the beacon itself such as battery voltage, device temperature, and counts of broadcast packets.
 - EID: an encrypted ephemeral identifier that changes periodically for use in security and privacy-enhanced devices

Physical Web

- 2014 project from Google's Chrome team
- Uses Eddystone beacon protocol
- Open source approach
- Replaces the QR code
- Allow physical devices to **broadcast a URL** around:
 - to provide an access to information
 - to interact or remote control the device
 - standard: no need for a different app each time
- Apps: Google Chrome, "Nearby Notifications", compatible Android & iPhone apps
- Official web site: https://google.github.io/physical-web/

An interesting hacking device: the RuuviTag beacon

- Nordic nRF52832 SoC
- Sensors: temperature, humidity, air pressure, accelerometer
- 2 buttons, 2 LEDs, NFC-A tag, SWD debugging, FOTA programming
- 45 mm diameter PCB, IP67 enclosure
- 1000mAh battery
- BLE compatibility: iBeacon & Eddystone
- C & JavaScript programming (Espruino)
- Long range RF antenna (500-1000m!) P. 11 Digital Securit

Digital Security - Security review of proximity technologies: beacons and physical web

iBeacon security

digital security

iBeacon basics & frame format

- iBeacon frames are sent in plaintext
- Important data for apps: UUID, major number & minor number
- Sniffing, replaying and cloning is easy...

Byte offset	Default value	Description	Properties
o	0x02	Data length - 2 bytes	constant preamble
1	0x01	Data type – flags	constant preamble
2	0x06	LE and BR/EDR flag	constant preamble
3	0x1a	Data length - 26 bytes	constant preamble
4	Oxff	Data type - manufacturer specific data	constant preamble
5	0x4c	Manufacturer data	constant preamble
6	0x00	Manufacturer data	constant preamble
7	0x02	Manufacturer data	constant preamble
8	0x15	Manufacturer data	constant preamble

Beacons & iBeacon sniffing (1/2)

- Sniffing broadcast traffic is easy!
- Apple restricts arbitrary UUID listening...
- Using a smartphone:
 - Android tools: Beacon Toy, nRF Connect, Locate Beacon, ...

		Bea	icor	ו To	у				•
65	20	48	52	UΖ	ua	та	00	00	00
00	00	00	00	00	00	00	00	00	00
00	00	00	00						
Last	alive	on N	lar 1	5 17:3	37:38			7	sample
DSR Nea	8176 r	5_01	417				2	,6 m	í ∦∘
Prox	imity	UUI)						
48D	E								66
Maj	or:	2 Mi	nor;	193	3				
Mea	sure	Pow	/er: -5	59 dB					
· · · · · · · · · · · · · · · · · · ·					A 100 A 100 A 100 A			-	

Beacons & iBeacon sniffing (2/2)

• Or using a computer:

- Proprietary Windows tool Nordic nRF Sniffer
- Open source Linux tool hcidump (with hcitool and optionally btmon for RSSI):

```
$ sudo hcitool lescan --duplicates &
$ sudo hcidump --raw -X -t
HCI sniffer - Bluetooth packet analyzer ver 5.37
device: hci0 snap len: 1500 filter: 0xfffffffffffffffff
2017-11-14 22:36:33.494792 > 0000: 04 3e 2b 02 01 03 01 24 b4 8c 20 46 29 1f 1e ff
.>+...$.. F)...
 0010: 06 00 01 09 20 00 09 a8 d0 5a 56 ad 2c 40 92 f5 .... ....ZV.,@..
 0020: 5d 9d f8 05 60 06 a8 9e 2e 95 6e aa 6d a7 ]...`...n.m.
2017-11-14 22:36:36.705447 > 0000: 04 3e 1a 02 01 04 00 1f ff 1a 6a 3b 12 0e 0d 09
0010: 61 62 65 61 63 6f 6e 5f 46 46 31 46 cc abeacon FF1F.
2017-11-14 22:36:36.788447 > 0000: 04 3e 29 02 01 03 01 f1 6d 1d 44 53 c7 1d 02 01
.>)....m.DS....
 0010: 06 03 03 aa fe 15 16 aa fe 10 fb 03 62 69 74 2e .....bit.
 0020: 6c 79 2f 53 55 72 70 72 69 73 65 c8
                                                      ly/SUrprise.
```


Sniffing BLE advertisements & iBeacons

Spoofing attacks

- hcitool and companion scripts (https://github.com/irontec/ibe acons-simple-tools.git) can easily spoof iBeacons
- BT profile and BDADDR may have to be spoofed too
- Android Beacon Toy provides easy cloning feature!

P. 17 Digital Security - Security review of proximity technologies: beacons and physical web

Forging fake iBeacon frames

WikiBeacon (1/5)

- Community resource providing crowd-sourced information (smartphone app) about proximity beacon usage
- Maps, stats and search tools
- http://www.wikibeacon.org/
- See also https://openuuid.net/

WikiBeacon (2/5)

WikiBeacon (3/5)

WikiBeacon			Search	Stats	Мар	RADIUS NETWORKS
c	Counti	ries with the most	beacons			
	Rank	Country	Count			
	1	United States	<mark>1493</mark> 1			
	2	Taiwan	8473			
	3	China	8055			
	4	South Korea	4340			
	5	Japan	3230			
	6	Singapore	3081			
	7	Italy	2102			
	8	India	2073			
	9	Germany	1515			
	10	Australia	1386			
	11	Canada	1310			
	12	United Kingdom	1302			
	13	France	1288			
	14	Brazil	1056			
	15	Netherlands	1046			
	16	Mexico	1040			
	17	Spain	971			

WikiBeacon (4/5)

6	Wil	ciBeacon	Search	Stats	Map	RADIUS NETWORKS					
	World cities with the most beacons										
F	Rank	City	Country	1		Count					
1		Singapore	Singapo	ore		1247					
2	2	Washington	United S	States		930					
3	3	성남시 (Seongnam)	South K	Corea		923					
4	4	Melbourne	Australi	а		908					
5	5	서울	South K	Corea		895					
6	6	赵区	Japan			747					
7	7	Guadalajara	Mexico			721					
8	3	Toronto	Canada	L		581					
9	Э	Milano	Italy			560					
1	10	성남시	South K	lorea		547					
1	1	Torino	Italy			531					
1	2	横浜市	Japan			503					
1	3	Kraków	Poland			413					
1	4	Greenwich	United \$	States		397					
1	15	안양시 (Anyang)	South K	lorea		379					
1	16	London	United I	Kingdor	n	378					
1	7	서울특별시	South K	lorea		357					

Digital Security - Security review of proximity technologies: beacons and physical web

P. 23

WikiBeacon (5/5)

WikiBeacon		Search	Stats	Map	RADIUS NETWORKS
	Beacon Search				
UUID (requ Major Minor	ired)	1			
FIND					
WikiBeacon™ © 2014-201	8 Radius Networks About	Privacy Po	licy C	ontact	

Attack scenarios: physical access

- Test points or flash memory access
- Dump with OpenOCD and a suitable adapter
- Access to all secrets & perfect cloning!

> reset halt target halted due to debug-request, current mode: Thread xPSR: 0xc1000000 pc: 0x000006d0 msp: 0x0000007c0 > flash banks #0 : nrf51.flash (nrf51) at 0x00000000, size 0x000000000, buswidth 1, chipwidth 1 #1 : nrf51.uicr (nrf51) at 0x10001000, size 0x000000000, buswidth 1, chipwidth 1 > dump image nrf51.flash 0x00000000 0xffffff

0001f800	42	48	de	49	00 20 OC	9a
0001f810	66	00	02	00	33	09
0001f820	00	00	05	89	6f	бе

Attack scenarios

- Spoofing beacons can cause:
 - Location spoofing for applications
 - Fake data uploaded to cloud
 - Fraudulent profit (ex: game at CES 2015)
- iBeacon with weak configurations (DFU/FOTA) or passwords (PIN & passwords are usually sent... plaintext):
 - RCE
 - Advertisements for competitors
 - DoS
- UUID harvesting (app store or open database):
 - Application spamming
- Tracking / motion detection
- Vulnerabilities involving hooked mobiles applications: remote code execution?

Physical Web security

digital security

Payload formats

• URL scheme prefix and TLD are encoded for compression purposes:

Frame Specification

Byte offset	Field	Description
0	Frame Type	Value = 0x10
1	TX Power	Calibrated Tx power at 0 m
2	URL Scheme	Encoded Scheme Prefix
3+	Encoded URL	Length 1-17

IRL Scheme Prefix						
Decimal	Hex	Expansion				
0	0x00	http://www.				
1	0x01	https://www.				
2	0x02	http://				
3	0x03	https://				

Eddystone-URL HTTP URL encoding

The HTTP URL scheme is defined by RFC 1738, for example https://goo.gl/S6zT6P, and is used to designate Internet resources accessible using HTTP (HyperText Transfer Protocol).

The encoding consists of a sequence of characters. Character codes excluded from the URL encoding are used as text expansion codes. When a user agent receives the Eddystone-URL the byte codes in the URL identifier are replaced by the expansion text according to the table below.

Decimal	Hex	Expansion
0	0x00	.com/
1	0x01	.org/
2	0x02	.edu/
3	0x03	.net/
4	0x04	.info/
5	0x05	.biz/
6	0x06	.gov/
7	0x07	.com
8	0x08	.org
9	0x09	.edu
10	0x0a	.net
11	0x0b	.info
12	0x0c	.biz
13	0x0d	.gov
1432	0x0e0x20	Reserved for Future Use
127255	0x7F0xFF	Reserved for Future Use

• Full specification: https://github.com/google/eddystone/tree/master/eddystone-url

Physical web

- Uses Eddystone URL protocol
- Straightforward to implement: Beacon Toy (Android), PyBeacon (Python)

\$ sudo pip install PyBeacon \$ sudo PyBeacon -u https://twitter.com/nono2357 Advertising: url : https://twitter.com/nono2357

• But some limitations

Eddystone URL limitations and bypasses (1/2)

- Basic limitations:
 - Chrome and Nearby Notifications only support HTTPS URLs
 - URL length limited to 17 characters
- URL shorteners!

Physical Web security

"Physical" phishing & tracking with URL shorteners

Eddystone URL limitations and bypasses (2/2)

- Google Physical web service uses a proxy to preview links while protecting personal information and possibly filter spam
- Testing Google proxy could be fun!
 - User agent cloaking
 - Recursive redirections
 - Allowed content types

What about other web services?

 Once link is clicked, the user is no more protected against fingerprinting (IP, MAC, user agent, OS, browser...), tracking and exploits

mDNS, Wi-Fi Direct, SSDP and FatBeacon support

- mDNS & SSDP: discovery of physical web services throught Wi-Fi and IP
- Wi-Fi Direct: serves content via P2P Wi-Fi and HTTP (device name: PW-<title>-<port>)
- FatBeacon: sends full content over BLE
- These features need to be carefully tested for security before use

Settings	
Physical Web Service Google Physical Web Service	
CUSTOM PHYSICAL WEB SERVICE ENDPOINT	
Custom Physical Web Service URL	
Custom Physical Web Service API ve Version 1	ers
Custom Physical Web Service API ke	ey
SCAN SETTINGS	
Enable mDNS Enabling mDNS allows you to find items on the local network.	
Enable Wi-Fi Direct Enabling Wi-Fi Direct allows you to find Wi-Fi beacons.	
Enable FatBeacon Enabling FatBeacon allows you to find beacons that contain offline web pages.	
DEBUG SETTINGS	
Enable Debug View Enabling debug view allows you to see more metadata and ranging data.	
Wi-Fi Direct Broadcast Port	

Physical Web security

Eddystone security

- Eddystone can provide beacon security (requires internet connection)
- Beacons should also rotate their BDADDR for privacy
- Eddystone cryptographic features (based on AES-EAX), extended features (mDNS, Wi-Fi Direct, SSDP, FatBeacon) and implementations should be thoroughly audited...

Web Bluetooth security

digital security

Introduction to the specification

- W3C open specification: https://webbluetoothcg.github.io/web-bluetooth/
- Allows a desktop/mobile browser to directly query BLE devices
- Provides a Javascript API: https://developer.mozilla.org/fr/docs/Web/API/Web_Bluetooth_API

Compatibility

Web E	Web Bluetooth B - UNOFF Global 53.81%										
Allows we selected	Allows web sites to communicate over GATT with nearby user- selected Bluetooth devices in a secure and privacy-preserving way.										
Current align	ned Usage relative Date	relative Show all						Andreid a	Ch 6		
IE	Edge	* Firefox	Chrome	Safari	Opera	iOS Safari	Opera Mini *	Browser	Android		
			¹ 49 ^P								
		52	4 60			10.2					
	15	55	⁴ 61	10.1		10.3		4.4			
11	16	56	⁴ 62	11	⁴ 48	11	all	⁴ 56	⁴ 61		
	17	57	⁴ 63	TP	⁴ 49						
		58	⁴ 64		⁴ 50						
		59	⁴ 65								
Notes	Known issues (0)	Resources (9)	Feedback								
MS Edge st Firefox stat WebKit sta Available Current	MS Edge status: Under Consideration Firefox status: under-consideration WebKit status: Not Considering Available by enabling the "Web Bluetooth" experimental flag in about: flags. Currently support varies by OS Currently support varies by OS										

Security

- A web page can scan devices and read or write GATT characteristics
- Web Bluetooth extends IoT RF short range attacks to very long range: typically a web page can query your smartwatch for your phone book or your heart rate!
- Harmless web sites can be attacked with XSS to relay BLE attacks...
- Web Bluetooth allows combinations of logical and physical attacks, even remotely!
- Security nightmare

P. 37

Web Bluetooth security

chrome --enable-web-bluetooth

chrome://flags/ -> "Experimental Web Platform"

https://googlechrome.github.io/samples/web-bluetooth/device-info.html?allDevices=true

P. 38 Digital Security - Security review of proximity technologies: beacons and physical web

digital security IT & IoT Security

Thanks!

Questions?

Contact:

renaud.lifchitz@digitalsecurity.fr

info@digitalsecurity.fr

Follow us on Twitter!: @iotcert

