
Switzerland has bunkers,
we have Vault

Christophe Tafani-Dereeper
09.11.2018

~$ whoami

➢ Security engineer @ Hacknowledge

➢ Threat hunting, SOC analyst, Infra, Dev(Sec)Ops

2

Christophe Tafani-Dereeper
(christophetd)

Goal of the talk

● Present the concepts and features of Hashicorp Vault

● Demonstrate how Vault can be used in the real-world scenarios

3

Challenges of secret management

4

● What is a secret?

● Secrets sprawled everywhere

● Hard to know where secrets are, who has
access to them

● Hard to log accesses to secrets

5

● What secrets were accessed?
● When?
● By whom?
● How to revoke them?

BREACH

The Vault way

6

● Secrets are centralized in Vault

● Secrets are short-lived and revokable

● Role-based ACLs for granular access control

● Audit trail for strong accountability and non-repudiation

Vault 101

7

Hashicorp Vault

8

● First version in April 2015, 1.0 released on October 23rd 2018

● Free, with paid advanced features (not discussed in this talk)

● REST API, CLI

9

Secrets storage Secrets engines

Authentication
methods

Auditing

10

Secrets storage Secrets engines

Authentication
methods

Auditing

11

Secrets storage

● Secrets are stored encrypted in a storage backend of your choice
○ Filesystem, MySQL, S3, etcd, Consul…

● Storage backends are untrusted
○ Compromising the storage doesn’t allow to compromise the secrets stored in Vault
○ Authenticated encryption (AES GCM)

● How does Vault know how to decrypt its storage?
⇒ Unsealing process

12

Unsealing

Encrypted Vault data

??

Unsealing

Encrypted Vault data

decryption/encryption with
master encryption key

Master key splitting

● The master encryption key is split using Shamir's Secret Sharing algorithm

● The different parts are distributed to several trusted individuals

● The master key can be reconstructed with a certain number of key shares
○ num_shares = 3, threshold = 2

⇒ Any combination of 2 administrators can unseal Vault

13

14

$ vault operator init -key-shares=3 -key-threshold=2

Unseal Key 1: uCLmRwheyiBjI38so2ayYtearJyENppycC6XU//oRcHp
Unseal Key 2: 7VrbOoxN6y2X/ieTKhAz4BILTnenFMOYj2IzvVISd4ga
Unseal Key 3: ZkNnWwYnj20VGF+Ib9brR7oeHY+3dfkWdtaw2HgGwAv5

15

$ vault operator init \
 -key-shares=3 \
 -key-threshold=2 \
 -pgp-keys=keybase:christophetd,keybase:milkmix,keybase:lbarman

Unseal Key 1: (encrypted unseal key 1)
Unseal Key 2: (encrypted unseal key 2)
Unseal Key 3: (encrypted unseal key 3)

Unsealing process

16

$ vault operator unseal unsealing_key_1

Key Value
--- -----
Seal Type shamir
Sealed true
Total Shares 3
Threshold 2
Unseal Progress 1/2

$ vault operator unseal unsealing_key_2

Key Value
--- -----
Seal Type shamir
Sealed false

Admin 1 Admin 2

17

Secrets storage Secrets engines

Authentication
methods

Auditing

Authentication & authorization

● Clients authenticate to Vault using an authentication method
○ For humans: LDAP, RADIUS, Github, username/password
○ For applications: AppRole, Kubernetes RBAC, AWS instance role

● Authorization:
○ Operators define ACLs on secret paths
○ Authentication engine configured to map authentication-method-specific user groups to Vault ACLs

e.g. Users of the “engineering” team on Github map to the ACL “engineer” in Vault

18

19

Authentication & authorization

Client

Authn methodauthenticates

token
(bound to ACLs)

Vault API
secrets engines,

configuration, etc.token

20

Example: Github authentication

21

Initial setup

1. Create an ACL (“policy”) for the engineering team
2. Enable the Github authentication method
3. Map Github users from the engineering team to the engineering team ACL

Example: Github authentication

Usage

1. User authenticates to Vault using a Github access token
2. Vault returns a token (bound to the ACL for the engineering team)
3. User can use this token to interact with Vault

22

$ vault policy write engineers-policy - <<POLICY

path "static/engineering/*" {
 capabilities = ["create", "read", "update", "list"]
}

POLICY

Initial setup (Operator): Create an ACL (“policy”) for the engineering team:

Example: Github authentication

$ vault auth enable github

Initial setup (Operator): Set up the Github authentication method

Example: Github authentication

$ vault write auth/github/config organization=Hacknowledge

$ vault write auth/github/map/teams/engineers value=engineers-policy

23

24

$ vault login -method=github

GitHub Personal Access Token: ***************

Usage (normal user):

Example: Github authentication

Success! You are now authenticated.

Key Value
--- -----
token 24GKildxW2aOy0cBFpNOEmsY
[...]
token_policies [default engineers-policy]

25

$ vault read static/engineering/secret
=== Data ===
Key Value
--- -----
foo bar

Example: Github authentication

Usage (normal user):

$ vault read static/ops/secret
Error reading static/ops/secret: Error making API request.
permission denied

26

Authentication and authorization wrap-up

● Policies define the permissions each client has

● Authentication methods allow to map external identities to a set of policies

27

Secrets storage Secrets engines

Authentication
methods

Auditing

Secrets engines
● Secrets engines are at the core of Vault

○ allow to store, generate, and manage all kind of secrets

● Lots of different secrets engines
○ Key-value (example on previous slide)
○ MySQL, PostgreSQL
○ AWS, Azure
○ SSH
○ PKI

28

Secrets engines
● Everything is a path: secrets engines can be mounted (enabled) and

unmounted (disabled) in Vault

● Each secret has a path within the engine they belong to
(e.g. static/banking/credit-card)

29

$ vault secrets enable -path=static kv
Success! Enabled the kv secrets engine at: static/

Static secrets engine: Key Value
● Most basic secret engine - can store arbitrary key-value pairs

30

$ vault write static/banking/credit-card number=123456 exp=01/2021
Success! Data written to: static/banking/credit-card

$ vault read static/banking/credit-card
Key Value
--- -----
exp 01/2021
number 123456

Dynamic secrets engines

● A dynamic secret engine generates secrets on-the-fly
○ MySQL/PostgreSQL: create user account
○ AWS: generate IAM credentials
○ PKI: sign certificate

● Dynamic secrets are supposed to be short-lived and revokable

31

Dynamic secret engine example: MySQL

● Vault holds root MySQL credentials

● Vault dynamically generates MySQL credentials with specific rights

● Credentials are limited in time and can be revoked

32

Dynamic secret engine example: MySQL

33

User / application

1. Get temporary read-only
credentials

2. Dynamically create user
account with read-only rights

3. Return credentials

Dynamic secret engine example: MySQL

34

Setup (operator):

$ vault secrets enable -path=db database

$ vault write db/config/mysql-prod \
 plugin_name="mysql-database-plugin" \
 connection_url="{{username}}:{{password}}@tcp(127.0.0.1:3306)/" \
 username="root" \
 password="my-secret-pw" \
 allowed_roles="mysql-prod-readonly"

$ vault write db/roles/mysql-prod-readonly \
 db_name=mysql-prod \
 creation_statements="CREATE USER '{{name}}'@'%' IDENTIFIED BY '{{password}}';\
 GRANT SELECT ON *.* TO '{{name}}'@'%';" \
 default_ttl="10m"

Dynamic secret engine example: MySQL

35

$ vault read db/creds/mysql-prod-readonly

Key Value
--- -----
lease_id db/creds/mysql-prod-readonly/4bFeHHV4fzJSs6T9xLQrFhdH
lease_duration 10m
lease_renewable true
password A1a-HpsqK2m547gSP5I0
username v-root-mydb-reado-6akkZS1xkOsm2P

Usage (user or application):

Access control with an ACL!

Dynamic secrets: leases

36

● Most dynamic secrets have a lease

lease = { id, time_to_live, is_renewable }

● In our previous MySQL example, we had:

$ vault read db/creds/mydb-readonly

Key Value
--- -----
lease_id db/creds/mysql-prod-readonly/4bFeHHV4fzJSs6T9xLQrFhdH
lease_duration 10m
lease_renewable true
password A1a-HpsqK2m547gSP5I0
username v-root-mydb-reado-6akkZS1xkOsm2P

Dynamic secrets: leases

37

● Leases can be renewed

(makes the previously obtained credentials valid for 10 more minutes)

$ vault lease renew db/creds/mysql-prod-readonly/4bFeHHV4fzJSs6T9xLQrFhdH

Key Value
--- -----
lease_id db/creds/mysql-prod-readonly/4bFeHHV4fzJSs6T9xLQrFhdH
lease_duration 10m
lease_renewable true

Dynamic secrets: leases

38

● Leases can be revoked by operators, individually or by prefix

$ vault lease revoke db/creds/mysql-prod-readonly/4bFeHHV4fzJSs6T9xLQrFhdH

Success! Revoked lease: db/creds/mysql-prod-readonly/4bFeHHV4fzJSs6T9xLQrFhdH

$ vault lease revoke -prefix db/creds/mysql-prod-readonly

Success! Revoked any leases with prefix: db/creds/mysql-prod-readonly

Additional concept: Response Wrapping
● Building block that can be used in more complex workflows

● When party A needs to communicate a secret to party B over an insecure channel

39

Party A

read secret, wrap response

single-use wrapping token

Party B

single-use
wrapping token

unwrap

secret data

Additional concept: Response Wrapping

● Coverage: the transmitted information is only a reference to the actual secret

● Malfeasance detection: party B detects if the communication has been
intercepted

○ Vault will tell it that the wrapping token is not valid
○ Party B can then raise an alert

● Limits exposure lifetime
○ wrapping token typically expires very quickly
○ its lifetime is independant than the TTL of the secret it wraps

● (Does not provide confidentiality)
40

41

Secrets storage Secrets engines

Authentication
methods

Auditing

Audit log

42

● Vault has an audit log for every request / response

● Can be shipped to syslog, or local file

SIEM
audit log

Audit log

43

{
 "time": "2018-02-31T13:37:37.123Z",
 "type": "request",
 "auth": {

"display_name": "github-christophetd",
"policies": [

 "default",
 "engineers-policy"

],
"metadata": {

 "org": "Hacknowledge",
 "username": "christophetd"

},
 },
 "request": {

"id": "97166a54-6b7b-f577-749a-96f191c9a10c",
"operation": "read",
"path": "secret/supersecret",
"remote_address": "10.0.1.47",

 },
 "error": "1 error occurred:\n\n* permission denied"
}

Audit log use-cases

44

● Anomaly detection
○ Access denied errors
○ Failed authentications

● Logs correlation

● “Honey secrets”
○ Give an application access to secret/honey
○ Allow the application to read the policy attached to its token (sys/policy/app-policy)
○ Raise alert if secret/honey is accessed - can indicate an attacker enumerating its privileges

45

Hands-on with Vault

46

Scenario #1: SSH access management

● Context:
○ You have a fleet of Linux servers
○ You want to provide SSH accesses to your team in a scalable way

● Approaches
○ 1 Linux user per employee per machine
○ 1 user on all machines, employees’ public keys in the authorized_keys on each machine
○ PAM
○ Vault’s SSH secret backend

Scenario #1: SSH access management

● Vault holds a SSH CA key, signs employees’ public keys

● Linux servers trust Vault’s CA certificate

● Built-in OpenSSH feature!
○ 0 additional software to install
○ 0 communication needed between Linux servers and Vault

47

Scenario #1: SSH access management

48

Server running
OpenSSH

CA cert

CA key

trusts

signs

authenticatesSSH pubkey
signed by Vault

SSH pubkey

Scenario #1: Initial setup phase

● Enable Vault’s SSH secret backend

● Generate a SSH CA certificate and key (only stored in Vault)

49

$ vault secrets enable ssh
Success! Enabled the ssh secrets engine at: ssh/

$ vault write ssh/config/ca generate_signing_key=true

Key Value
--- -----
public_key ssh-rsa AAAAB3NzaC…..

Scenario #1: Initial setup phase

● Deploy Vault’s SSH CA certificate as a trusted SSH CA on Linux machines

50

TrustedUserCAKeys /etc/ssh/vault-ssh-ca.crt

/etc/ssh/sshd_config

● Create a role in the SSH secrets engine, specifying…
○ A TTL: for how much time should Vault sign users’ public keys?
○ A remote user to allow connection as
○ (optionally) A CIDR list from which access should be allowed
○ (optionally) SSH features to allow (PTY, port forwarding, etc)

51

Scenario #1: Initial setup phase

$ vault write -f ssh/roles/developer - <<EOF
{
 "ttl": "10m",
 "allowed_users": "developer,tomcat",
 "default_user": "developer",
 "default_critical_options": { "source-address": "10.0.0.0/24" },
 "default_extensions": { "permit-pty": "", "permit-port-forwarding": "" },
 "allow_user_certificates": true,
 "key_type": "ca"
}
EOF

● Ask Vault to sign our SSH public key

52

Scenario #1: Usage

$ vault write ssh/sign/developer \
 public_key=@.ssh/id_rsa.pub \
 valid_principals=developer

Key Value
--- -----
serial_number 458e609f5eed0a8a
signed_key ssh-rsa-cert-v01@openssh.com AAAA...

$ ssh -i signed_key.pub developer@10.0.0.31

Welcome to Ubuntu 16.04.4 LTS (GNU/Linux 4.13.0-36-generic x86_64)
developer@server:~$

● Connect to a Linux server trusting Vault’s SSH CA

● vault ssh wrapper can do both in a single command

53

Scenario #1: Usage (wrapper)

$ vault ssh -mode=ca -role=developer developer@10.0.0.31

● Once the TTL is over, the signed key is not valid anymore

● What TTL to use?
○ Tradeoff between performance / availability and easy revokation

54

Scenario #1: TTL

$ ssh -i .ssh/id_rsa -i signed_key.pub developer@10.0.0.31

developer@10.0.0.31: Permission denied (publickey).

55

● Authentication easy for humans, harder for applications

● Our requirements:
○ Applications should be deployable automatically (e.g. via a CI/CD pipeline)
○ Each application should have a dedicated policy only allowing it to retrieve its

own secrets

● Most of the time, AppRole authentication method is the way to go
○ but it only provides a building block

Scenario #2: Authenticating applications

56

Scenario #2: Authenticating applications with AppRole

App

role-id, secret-id

token

How does the application know it?

● Tentative 1: Hardcode the secret-id on the VM/container where the app runs
⇒ But how do you initially get the secret-id?

● Tentative 2: Have the CI/CD inject the secret-id in the VM/container at deployment time
⇒ But how can the CI/CD authenticate to Vault to have access to the secret-id?

57

● The platform assigns a cryptographic and verifiable identity to each application instance
○ AWS: IAM EC2/ECS instance role
○ Kubernetes: Pod service account

● At runtime, the platform gives an easy way to the application to prove its identity
○ AWS: Metadata service running on 169.254.169.254 (only accessible from the instance)
○ Kubernetes: Injected in a volume /var/run/secrets/

● Vault has several authentication engines to allow application authentication with their
platform-specific identity

○ AWS, Azure, AliCloud, Google Cloud, Kubernetes secrets engines

Option 1: Platform integration

Platform 58

App

Platform control plane
(AWS IAM API, Kubernetes API, …)

1. Retrieve platform
specific, verifiable, identity

2. Use it to
authenticate to Vault

3. Verify identity

4. Map platform identity
to Vault policies

Vault token!

Option 1: Platform integration

59

● e.g. your applications run in VMs on an on-prem ESXi cluster

● How do you pass the authentication secret (secret-id) to your applications?

● Challenging problem - no silver bullet
○ highly dependent on the environment and technologies in use
○ hard to have a solution as secure as with platform integration

Option 2: No platform integration

60

● Trusted orchestrator: We extends our trust to an additional component
e.g. Jenkins, Gitlab CI

● Orchestrator is authenticated to Vault

● Orchestrator passes the AppRole secret-id to application it deploys

Option 2: Trusted orchestrator

61

● Orchestrator:
○ Can only retrieve the application’s AppRole secret-id (cannot read application secrets)

○ Is in a different network than the applications it deploys

● Applications:
○ authenticate using a dedicated AppRole
○ AppRole is configured to only allow authentications from the apps network
○ can only read their own secrets

path "auth/approle/role/my-app/secret-id" {
 capabilities = ["create", "update"]
}

Option 2: Trusted orchestrator

Network zone

Network zone

62

Trusted orchestrator scenario (with response wrapping)

Orchestrator

single-use wrapping token

Application

Deploy + pass
wrapping token unwrap

secret-id

read auth/approle/role/my-role/secret-id, wrap response

AppRole authentication with

{role-id, secret-id}

Vault token

Network zone

Network zone

63

Trusted orchestrator scenario

Orchestrator

secret-id

Application

Deploy + pass
secret-id

read auth/approle/role/my-role/secret-id

AppRole authentication with

{role-id, secret-id
}

Vault token

64

Trusted orchestrator scenario: result #1
Good:

● Applications can only access secrets as defined by their AppRole policy
● Orchestrator cannot access applications’ secrets

○ It cannot authenticate using the application’s secret-id (CIDR restrictions)

Bad:

● A compromised orchestrator can be used to deploy a backdoored application that leaks
secrets

Can we do better?

65

● Problem: Orchestrator has total control over the nodes where the apps run

● Consequence: Compromised orchestrator ⇒ compromised apps secrets

Application node

App

https://schd.ws/hosted_files/appsecusa2015/a5/Turtles.pdf

Orchestrator
clientOrchestrator server

secret-id

Artifacts repository

Pull app artifact
Authenticate using {role-id,

secret-id}

token

● Potential solution:

https://schd.ws/hosted_files/appsecusa2015/a5/Turtles.pdf

66

Trusted orchestrator scenario: result #2

● Orchestrator cannot deploy backdoored applications anymore

● It must still authenticate to Vault by some way (e.g. hardcoded token)
○ … but compromising the orchestrator becomes much less interesting!

● Potential improvement: response wrapping

● Transit secret backend: Encryption As a Service

● PKI secrets backend

● High-Availability mode

● Web UI

Wrapping up - Other Vault capabilities

67

● Unsealing process hard to automate

● Can easily become a single point of failure

● Not all secrets can be dynamic

● Added complexity

Wrapping up - Vault limitations

68

● Provider-dependent solutions:
○ AWS KMS
○ Google Cloud KMS
○ Azure Key Vault

● Hardware Security Modules

● Software Solutions
○ Square’s KeyWhiz
○ Pinterest’s Knox

Wrapping up - Vault alternatives

69

Readings and resources
● Hashicorp Learning center

https://learn.hashicorp.com/vault/

● “Secrets at Scale: Automated Bootstrapping of Secrets & Identity in the Cloud” (Netflix)
https://www.youtube.com/watch?v=15H5uCj1hlE

● “The Secure Introduction Problem: Getting Secrets Into Containers”
https://slideshare.net/DynamicInfraDays/containerdays-nyc-2016-the-secure-introduction-problem-g
etting-secrets-into-containers-jeff-mitchell

● “Secret Security Turtles”
https://blog.alanthatcher.io/vault-security-turtles

70

https://learn.hashicorp.com/vault/
https://www.youtube.com/watch?v=15H5uCj1hlE
https://slideshare.net/DynamicInfraDays/containerdays-nyc-2016-the-secure-introduction-problem-getting-secrets-into-containers-jeff-mitchell
https://slideshare.net/DynamicInfraDays/containerdays-nyc-2016-the-secure-introduction-problem-getting-secrets-into-containers-jeff-mitchell
https://blog.alanthatcher.io/vault-security-turtles

Thank you!

Twitter @christophetd
Email christophe@tafani-dereeper.me
Web https://christophetd.fr

