
1©2018 Check Point Software Technologies Ltd.

Ethan Schorer | Check Point Security Leader

Challenges in Developing Cyber Security Software

DILEMMAS EVERYWHERE!
GET IT RIGHT OR GET PWNED

3

First, a bit about me… Ethan Schorer

ethans

@ethan_sec

Since 2005

Active member in
OWASP’s Israeli chapter

ethan.dev.sec@gmail.com

4

By Source, Fair use, https://en.wikipedia.org/w/index.php?curid=21579577

5

ß Shifting Security to the Left ß

6

Why is Cyber Software Different?

7

Calculator Enterprise Firewall PC Anti-Virus
Crash Lost some calculations

Wasted time
No access to internet
OR
Free access to
internal

No file checking –
viruses enter the
system

Memory Leak Eventually, user will close Reboot, which causes
downtime

Stop using AV? Or
maybe AV won’t work
if not enough RAM

RCE
(Remote Code
Execution)

Difficult as Calc doesn’t
have network access and
doesn’t get remote input

Gives control to the
firewall

Sees network traffic,
runs in admin
privileges

Bugs Becoming Security

DEVELOPMENT LIFE CYCLE
SECURE

9

10

Shifting Security To The Left

http://www-01.ibm.com/support/docview.wss?uid=swg27048410&aid=1

Find during Development

$80 / defect
Find during Build

$240 / defect
Find during QA/Test

$960 / defect
Find in Production
$7,600 / defect

11

12

Design Review
Code Review

Testing
etc.

Security
Security

Security
Security

14

Where do we begin? Training!

https://www.theatlantic.com/entertainment/archive/2018/07/who-is-sacha-baron-cohen-satirizing/565397/

15

Training

Secure
Coding

16

Training

Secure
Coding

ü Low Level (C/C++) – pointers, overflows, etc.
ü High Level (Java) – exceptions, etc.
ü HTTP
ü Client vs. Server Software

17

Coding Style

© Shenova Fashion

18
https://webmastah.pl/dlug-technologiczny-najczestszy-powod-wykolejania-sie-projektow/

19

Input Validation

Second layer
of defense

Raw
Input

Application
Logic

Safe
Syntax

Trust
Boundaries

Syntax
Validation

Semantic
Validation

Privileged
Code

- User input
- Network I/O
- File I/O
- cmd args
- env vars

- Exec cmd line
- File I/O
- Exec DB query

Safe
Values

21

Malware Buster

22

23

https://www.theverge.com/2016/11/7/13552016/doctor-strange-marvel-cinematic-universe-dicussion-questions

24

https://www.theverge.com/2016/11/7/13552016/doctor-strange-marvel-cinematic-universe-dicussion-questions
https://starbaseatlanta.com/product/batman-1960s-tv-series-dynamic-duo-batman-robin-photo-refrigerator-magnet-new-unused/

25

https://www.theverge.com/2016/11/7/13552016/doctor-strange-marvel-cinematic-universe-dicussion-questions
https://starbaseatlanta.com/product/batman-1960s-tv-series-dynamic-duo-batman-robin-photo-refrigerator-magnet-new-unused/
Wikipedia

26

Malware Buster

REQUIREMENTS

28

29

1. What do we want to create in our product?
2. How secure will it be?
3. Who is the audience that will use my product?
4. Where will the product be installed?
5. On which operating systems? Is it secure? Is it hardened?
6. Who has physical access to the system?
7. Who has network access to the system? What sort of access?
8. How do we update the software? (bugs, vulns, etc.)

Requirements

30

• User Base
̶ Administrators only – the UI can be more advanced
̶ All users – keep it simple

• Physical Access
̶ How well do we need to protect the device from external users
̶ Is it locked with access only to authorized personnel?
̶ Is it installed on smartphones that get lost easily?

• Operating System
̶ Is access to the OS for highly privileged users? (no escalation bugs)

• Is the network access authenticated? Secure protocols?

Requirements - Examples

31

Needs to be super-secure since it is a security product

Malware Buster – Requirements

32

Physical access is for the security team only

Malware Buster – Requirements

33

Shell and Administrative access – for admins only

Malware Buster – Requirements

34

Operating System is a distributed hardened Linux (i.e. SELinux)

Malware Buster – Requirements

35

Place behind a firewall == no direct access from outside

Malware Buster – Requirements

36

But – all network traffic goes through it – including malicious files

Malware Buster – Requirements

37

Malware Buster – Recommended Setup

DESIGN

39

40

1. Should we make it more usable or more secure?
̶ Do they necessarily conflict?

2. Should the defaults be more secure or easier to sell?
3. How much do we need to lead the user to making the more secure

choice?
4. Which network ports are accessible? To who?

Design

41

Security at the expense of usability?

42

43

Malware Buster – Configuration Defaults

vs

45

Open Ports & Access?

46

• What’s the max file size to inspect?
• How many signatures to look for (how far back)?
• How long of a TCP connection will we work on to wait for the file?
• If we run an emulation of the file:

̶ How long should we wait in the emulator to see malicious activity?
̶ Which operating systems?
̶ Which versions of applications?
̶ How many emulators?

• What’s the behavior when the system is full utilized (CPU, RAM, Disk)?

Dilemmas, dilemmas, and a few more dilemmas

47

48

Not “What can go wrong?” – Assume something will go wrong!

1. Why are we building this?
2. What needs to go right?
3. How do we make sure that happens?

Good threat modelling will understand the business needs and risks if
something goes wrong

Threat Modelling

49

Threat Modelling – Malware Buster

Trusted zone

Untrusted zone

Basic trust

50

What about security boundaries within MB?

• Is it all a single trust zone?
• Do we dissect to different parts?

– Which?

• What are the pros & cons to each
approach?

51

Components of Malware Buster

53

Component Boundaries

54

ConsPros

Multiple Trust Boundary

• Each component handles
itself

• More freedom in updating
singular components

• Might have duplicate
checks

• Get untrusted data deep
into the system

https://www.deviantart.com/misterjazzz/art/
Constructicons-with-Prowl-C-446618997

55

ConsPros

Single Trust Boundary

• Validation at input (FE) and
at Output

• Anything inside is trusted

• Hard to anticipate all the
attack vectors early on

• Changes to one component
cause additional changes
elsewhere

56

Programming Languages

57

• Does it run on a VM?
̶ Which one?
̶ How secure is it?

• What are the language’s pitfalls?
• Which compiler am I using?

̶ Can I trust it?
• How easy to debug?
• How easy for someone to understand my code?

Programming Language Dilemmas

58

Low Level (C, C++) High Level (Java, Python)
Code is not seen Decompiling & finding bugs is easier
Memory management Memory is managed by the VM
Speedy Usually slower
Buffer overflows and the such Can’t overwrite memory
Type-safe Usually not type-safe

Which Language to Code in?

59

Malware Buster – Programming Languages

• Frontend in Python
• Backend will be in C++

60

61

62

Malicious Open Source

© David Gilbertson

63

Malicious Open Source
http://www.jsfuck.com/

64

leftpad breaks NPM

65

Typo-Squatting Library Names
Package Exploit Type
smplejson

Research/Data Leakage

pkgutil
timeit
diango
djago
dajngo
djanga

Gain persistence through modifying the
.bashrc scripteasyinstall

libpeshka
pyconau-funtimes Reverse shell
mybiubiubiu Data leakage
colourama Gain persistence through malicious VBScript

Package list: Bertus
gif: https://www.recordedfuture.com/typosquatting-
domains-analysis/

66

Open Source updates are vital – as the bugs are public

Stay up-to-date

67

Follow up on vulnerabilities (CVEs, Github issues, mailing lists, etc.)

Open Source / 3rd Party Software

68

Vulnerability Management Tools

69

70

Why Update? 1. Bad Publicity

71

Why Update? 2. Get Hacked

72

DEVELOPMENT

74

• OWASP Top 10
• OWASP Cheat Sheets
• Books like Effective C++
• Many online resources

Follow Best Practices

75

• How protective should we be when writing the code?

Development

76

What if we need to change the design?
̶ Hint: make sure the new design is still secure

Development

77

Open Source

VERIFICATION

80

How much time to spend on writing tests?

Testing Dilemmas

81

When to run the tests?

Hint:

http://www.tildee.com/TazWyb

82

• What percentage of tests must pass?
• What percentage of code must be covered in unit tests?
• If an automatic test fails

̶ Do we change the test?
̶ Do we skip the test?

Testing Dilemmas

83

Dev/Verification – Self-Testing

• Write (and run) Unit Tests

• Write (and run) System Tests

• Positive Tests & Negative Tests

• Test according to the Threat
Modelling from the Design stage
– Positive testing

– Negative testing

• Static Code Analysis

• Dynamic Analysis https://www.outbrain.com/techblog/2017/05/effective-testing-with-loan-pattern-in-scala/

84

• Product testing
• Security testing

̶ Open ports
̶ Old/buggy/vulnerable versions of 3rd party software
̶ Symbols in code
̶ Verbose debug (and maybe passwords are there too)
̶ Unencrypted sensitive information

• Pen-Testing
̶ Fuzzing
̶ Black Box, but not only

QA

85

• 75% code coverage in unit-test

• 10 system tests per feature

• CI/CD:
̶ 100% of code must be reviewed by senior peer

̶ All unit tests must pass to push code

̶ All unit & system tests must pass to deploy

• Coding style guidelines are defined

• QA test features, sometimes post-deployment

• Pen-test new major features, and post-deployment

Malware Buster – Example Testing Decisions

MAINTENANCE
Post Release

87

• What to do if we discover a security bug?
• How fast can we react and release?
• How do we make sure customers install?
• When & how to Publish?

Maintenance

88

• What if I’m using a vulnerable 3rd party library?
̶ Check if I’m exploitable?
̶ Always upgrade?
̶ What if it’s a dependency?

Open Source

89

91

Memory leak

Is Every Quality Bug a Security Vulnerability?

92

Crash

Is Every Quality Bug a Security Vulnerability?

93

Misconfiguration
(i.e. conflicting settings)

Is Every Quality Bug a Security Vulnerability?

Pablo Picasso
Bust of a Woman (Dora Maar), 1938
oil on canvas
Hirshhorn Museum and Sculpture Garden, Gift of Joseph H. Hirshhorn, 1966
© Picasso Estate/SODRAC (2016)
Photo: Cathy Carver

94

• Evasion / Missing feature?

Is Every Quality Bug a Security Vulnerability?

https://www.youtube.com/watch?v=z2cnkxzkrAA
http://freegifmaker.me/images/2deMv/

95

CI/CDCodingSetup

Malware Buster - Summary

• Hardened Linux
• Python & C++
• SCA
• Unit tests – 90%
• System tests

• Jenkins
• Code reviews

– Style
– Correctness

• 100% tests success
• Deploy
• Customers are notified

privately if compromised
• Software auto-updates with

notifications

96

• Security adds many dilemmas
• Shifting left is vital
• Clear guidelines are the way to go

Summary

97©2018 Check Point Software Technologies Ltd.

Ethan Schorer | Check Point Security Leader

THANK YOU FOR LISTENING

ethans

@ethan_sec

ethan.dev.sec@gmail.com

