
How to provide security fixes in a 
high constraint ecosystem?

Practical examples with the Jenkins project

Friday 9th November 2018Wadeck Follonier



What is the general context?

2



Jenkins and you

● Do you know Jenkins?

● Do you use Jenkins in your company?

● Do you administer an instance yourself?

● Do you apply security update when they are released?

○ Have you subscribed to the security advisory 

mailing list?

○ jenkinsci-advisories@googlegroups.com

3



Jenkins and me

● Member of the Jenkins Security team

● Security software engineer at CloudBees

● Daily tasks:

○ Providing security fixes

○ Detecting vulnerabilities and preventing them

○ Reviewing internal design / implementations

○ Improve security awareness / education

○ Helping support about security topics
4



The Jenkins project

● Most popular CI/CD tool on the market

● Open-source

● Over 1.7 Million users

● ~1500 plugins

● Integrated with most of the tools

○ Missing an integration? You can write 

your own plugin easily

5



Jenkins...

● Is a remote execution engine

○ build your project, execute scripts, etc.

● Has access to sensitive data

○ credentials, secrets, source code, artifacts, etc.

● Is a multi-user service

○ various kind of users with different expertise
6



Main security objectives (1)

● Prevent intrusion

● Secure your data

● Avoid privilege escalation

● Enforce best practices

7



Main security objectives (2)

● Do not break your instance on security update

○ Update ASAP when a security advisory is published

8



Main security objectives (2)

● Do not break your instance on security update

○ Update ASAP when a security advisory is published

9



Main security objectives (3)

● About the attack

○ Discovered in February 2018

10



Main security objectives (3)

● About the attack

○ Discovered in February 2018

○ Patch was released in April 2017

11



What the security team does

● jenkins.io/security/advisories

12



Best practices

● Principle of least privilege

● Use different credentials

● Avoid running build on master

● Take care of the security warnings

13



What are the constraints?

14



Constraints for a security fix (1)

● Keep backward binary compatibility

● Confidential aspect of the security discovery until fixed

● Cannot fix only one plugin if the vulnerability is 

generalized in multiple plugins

15



Constraints for a security fix (2)

● Some vulnerabilities require structural change

● Multiple long term support versions in our commercial 

offering

● How to deal with features dangerous by design

● Time constraints due to disclosure policy
16



Constraints from community aspect

● Open-source community

● Private plugins

● Broad plugin ecosystem

● No common coding practice among plugins

○ Maintainers are not always Java developers

● Some plugins are not maintained

● Sync with maintainers for security release

17



Constraints from project (started in 2004)

● File system as storage by default

● Legacy parts kept for compatibility

● Lots of knowledge required to avoid breaking stuff

18



Our approach to tackle those problems

19



General process to handle reports

● Vulnerability reported in our private tracker

● Reproduce the problem

● Determine the impact / severity

● Correct the behavior

○ Either the plugin maintainer

○ Or a security team member (esp. for core)

● Review by the security team

● Synchronization for the next security release
20



Issue tracking

● Process: jenkins.io/security/

● Private project part of the public Jira

● Members of security team have full access

● Reporter and assignee have access to their issue

21



Developer education

● Improve security awareness

○ Inside community / company

○ Using documentation / best practices / talks

● Code review

22

Like today!



Vulnerabilities prioritisation

● Common vulnerability scoring system (CVSS)

● Popularity of the plugin (# of installations)

● Difficulty of the correction (potential breakage)

● Discussion inside the Jenkins security team

23



Plugin blacklisting

● Plugin with dangerous features

● Not easily fixed

● Could be temporary or permanent

24



Reduce the risk to break instances

● We ask the administrators to upgrade ASAP

● We cannot break their instance

● Requirement to deliver high quality code

○ Small amount of review

○ Keep changes as small as possible

25



Up-merge and non-regression

● Multiple LTS lines for CloudBees customers only

● Non-regression tests are very useful to detect conflicts

26



Our tools to ease our job

27



Plugin compatibility tester (PCT) to reduce risks

● Before release a security fix

● Ensure compatibility with the different core versions

○ No recompilation

○ Tests must pass

28



@Restricted annotation (1)

● public modifier in Java

● Open API for other plugins

● Jenkins requires some cases to be public

○ @Extension classes

○ Form validation

● @Restricted(NoExternalUse.class)

○ Enforce other plugins are not using that code
29



@Restricted annotation (2)

● Allow developer to limit their exposed API

● Reduce the risk of breaking backward compatibility

● Avoid call to methods in unintended ways / state

30



Default configuration for fresh / upgrade

● Existing behavior / configuration is not safe

● We add a new one that is secure

○ On fresh installation, enabled by default

○ On upgrade, we must keep the legacy behavior

31



Administrative monitors

● When a feature configuration is potentially dangerous

○ Display a message to the administrators

○ When possible, actionable buttons

● Ease migration from existing configuration

32



Escape hatches

● If the legacy / dangerous behavior was expected

● Administrators could use some system property flags to 

keep the legacy behavior at their own risk

● Implication of such configuration is explained in the 

security advisory

33



Telemetry

● Improve anonymous usage statistics

● Currently used to detect the unused escape hatches

● Could be used in the future to help understanding real 

usage of certain features

34



Custom scripts to search code

● During vulnerability correction

○ We need to ensure no other plugins are sharing code

○ Search for code similarities

● Avoid publishing an advisory that will disclose other 

vulnerabilities

● Unfortunately not possible for closed-source plugin

○ Incentive for code sharing!

35



API plugin

● Special kind of plugin that contain only a library

● Avoid upgrading the version in every plugin

● Esp. useful for libraries with active security research

● Examples:

○ Bouncy Castle

○ Jackson

36



Setup Wizard

● Ease the initial configuration

● Secure by default

● Enforce best practices

37

Without good 

default config!



Secret class (1)

● Allow developers to store sensible information

● Easy migration from previously plain text (String)

● No cryptography knowledge required

38



Secret class (2)

● Do you use Cipher.getInstance("AES") ?

● Default mode on Oracle JVM: ECB

39



Practical examples

40



API Token (1)

● Previous version:

○ Data was stored in encrypted form on disk

○ Was possible to recover the token value

○ Only one token per user

41



API Token (2)

● New version:

○ Multiple tokens per user

○ Only the hash is stored

○ Possibility to revoke token individually

○ Easy migration

42



XML deserialization (1)

● XML External Entity (XXE) 

○ If the parser is not safely configured

● Deserialization

○ URL to generate DNS requests

○ ysoserial

43

setFeature("http://xml.org/sax/features/external-general-entities", false);

setFeature("http://xml.org/sax/features/external-parameter-entities", false);

[+ other depending on the library]

http://xml.org/sax/features/external-general-entities
http://xml.org/sax/features/external-parameter-entities


XML deserialization (2)

● Java deserialization could be very dangerous

● Initially we blacklisted the dangerous classes

● Too many reports

● Migrate to a whitelist pattern that is more secure

44



Script sandboxing

45

● Reduce scripting capacity

● Script approval

● Using a whitelist

○ Methods / fields the administrators pre-approve



Conclusion

● Apply the updates!

● Ease update process

● Beware of unsecured default settings

● Most of your users are not sufficiently “educated”

46


