
The smart home I didn’t ask for

Nils Amiet
November 15, 2022

1

Who am I?

• Nils Amiet
• Security researcher
• Privacy
• Data processing at scale
• Linux enthusiast
• @tmlxs
• Thank you to: Nathan, Sylvain, Jon, Nicolas, Karim, Terry, and others

2

What is this about?

• This is my story with a smart home

Network traffic
analysis Tablet analysis Findings Disclosure

3

• Chapter 0: Once upon a time. . .

3

Once upon a time. . .

• I was looking for a new apartment
• Found an apartment for rent
• Decided to rent it
• The day I moved in, this was on the wall by the entrance

4

The tablet

5

Using the tablet

• Wall-mounted tablet
• Runs in kiosk mode, no apparent way to escape the app that it’s running
• Touch buttons to control things in the apartment

• Control window blinds
• Control heating
• Turn on/off lights
• Open building entrance door when someone rings the doorbell

6

Smart device dependence

• More and more buildings come pre-installed with smart devices
• Deep integration with the house/apartment
• Tenants become forced to use the smart device to do essential day-to-day tasks

• For example, if outside window blinds are down, access to the balcony is blocked
• The only way to raise the blinds is to use the smart device

• This creates a dependence on the smart device

7

Smartphone pairing

• Android/iOS smartphone can be paired with the tablet
• Enable pairing of a new device on the tablet

• Tablet displays 4-digit code valid for 60 seconds
• Enter code on smartphone to pair
• Once paired, the smartphone app can be used for remote control
• This works from anywhere on the internet

8

• Chapter 1: Network traffic analysis

Network traffic
analysis Tablet analysis Findings Disclosure

8

Network traffic analysis

• Android smartphone app named eSMART Live
• Produces encrypted traffic
• => Man-in-the-middle attack
• Used Pixel 4 smartphone, Android 11
• Rooted it with Magisk
• Since Android 7.0, apps only trust system certificates by default

• Installed custom system certificates with the Move Certificates Magisk extension
• Install Magisk modules directly in-app (Modules tab)

9

https://github.com/topjohnwu/Magisk
https://github.com/Magisk-Modules-Repo/movecert

Having a look at network traffic

• Produces 99% XMPP traffic, but also some HTTPS traffic
• HTTP traffic: mitmproxy

• Also works with Burp suite or your favorite HTTPS proxy
• XMPP traffic: STARTTLS -> encrypted traffic
• Regular HTTPS proxies such as Burp or mitmproxy only support doing

man-in-the-middle over HTTPS, not over XMPP
• We needed another tool here

• XMPP proxy: xmpp-mitm worked for me

10

https://github.com/mitmproxy/mitmproxy
https://github.com/jgru/xmpp-mitm

11

Software Wi-Fi access point

• Software Wi-Fi AP on laptop: linux-wifi-hotspot
• Connect to that Wi-Fi AP using the rooted smartphone

• It will create a new network interface named ap0

12

https://github.com/lakinduakash/linux-wifi-hotspot

HTTPS proxy

• Setup mitmproxy to obtain clear-text HTTPS traffic
• The SSLKEYLOGFILE can then be used with Wireshark to decrypt traffic

• Edit > Preferences > Protocols > TLS > (Pre)-Master-Secret log filename >
Browse. . . and select sslkeylogfile.txt path

• Listens on port 8080 by default
Running mitmproxy
export SSLKEYLOGFILE=~/esmart/mitm/sslkeylogfile.txt
mitmweb --mode transparent --showhost

13

XMPP proxy

• Generate a new key pair and certificate
• The built-in ones did not work for me
• Apparently, app checks for the certificate’s domain name
• Had to create a certificate valid for xmpp.myesmart.net

Generating a new certificate
openssl req -x509 -sha256 -nodes -days 365 -newkey rsa:2048 \

-keyout private.key -outform pem -out server.pem \
-subj "/CN=xmpp.myesmart.net"

openssl x509 -in server.pem -out server.crt -outform der

14

XMPP proxy (part 2)

• Install server.crt on the Android device as user certifcate
• Use Magisk extension to move it to system certificate
• Run xmpp-mitm
• Also produces an sslkeylogfile.txt

Running xmpp-mitm
sudo ./xmpp_mitm.py --iface ap0 --write_file out.pcap \

--sslkeylog ~/esmart/mitm/sslkeylogfile.txt --port 5222 \
--key private.key --cert server.pem

15

Transparent proxy setup

• Transparent proxy is set by redirecting traffic automatically
Transparent proxy using iptables
$ export IFACE=ap0
$ iptables -t nat -A PREROUTING -i $IFACE -p tcp \

--dport 80 -j REDIRECT --to-port 8080
$ iptables -t nat -A PREROUTING -i $IFACE -p tcp \

--dport 443 -j REDIRECT --to-port 8080
$ iptables -t nat -A PREROUTING -i $IFACE -p tcp \

--dport 5222 -j DNAT --to-destination 192.168.12.1

16

Smartphone app findings

• No certificate pinning
• We were able to see the clear-text HTTPS and XMPP traffic
• JSON payloads are sent inside XMPP messages

17

Example payload (turn on light 13)

{ "headers": {
"from": "a-280074a2fe917-686",
"to": "master",
"timestamp": "2021-11-04 16:09:18Z",
"method": "CMD",
"type": "operation",
"size": 22,
"version": "1.13.0"

},
"body": {

"id": 13,
"onoff": "on"

}
}

18

Moving on

• App source code is obfuscated
• This gives us limited understanding of that app
• Can reverse engineer but there may be quicker

ways around this
• I decided to move on

19

• Chapter 2: Tablet analysis

Network traffic
analysis Tablet analysis Findings Disclosure

19

Tablet analysis

• Goal: figure out how the tablet works
• Can we connect to the tablet?

20

21

22

23

24

25

Tablet connection

• USB debugging is enabled by default
• Tablet is rooted by default (!)
• Runs Android 4.4 (released October 2013)

26

Collecting .apk files for installed apps

Enumerate installed apps
$ adb shell pm list packages
package:ch.myesmart.tabletapp
...
package:com.teslacoilsw.quicksshd

Get path of installed apk
$ adb shell pm path ch.myesmart.tabletapp
package:/data/app/ch.myesmart.tabletapp-1.apk

Get an .apk from its package name
$ adb pull /data/app/ch.myesmart.tabletapp-1.apk

27

Unpacking and decompiling .apk files

• Target:
• 4 eSMART apps: tabletapp, manager, ota, launcher
• SSH server app: quicksshd

• Unpack/Decompile APK: jadx
• Was good enough for me
• Alternative

• APK -> JAR: enjarify
• Use classical java decompiler, for example: fernflower (from IntelliJ)

• eSMART apps code was non-obfuscated
• Easy to understand what happens

28

https://github.com/skylot/jadx
https://github.com/google/enjarify
https://github.com/fesh0r/fernflower

29

Different tablet versions

• The tablet app source code indicates that there are multiple versions of tablets that
are deployed

• Mine was one of the oldest (rk3188) but there are also others
• Rockchip rk3188, C91, C93, Finch

30

Building’s main entrance door

• Pulled files on the tablet in /data/data, /mnt/external_sd,
/mnt/internal_sd

• File /data/data/ch.myesmart.tabletapp/files/eConf/doorip.txt contains
the IP address of the building’s main entrance door (10.0.5.100)

• Open door: simple HTTP GET request
• No authentication required
• Only have to be connected to the same wired network

Opening my building’s main entrance door
$ curl http://10.0.5.100/enu/lockstate.xml.p?lock1state=1

31

Neighborhood

32

Other doors in the neighborhood

• Shared wired local IP network for all apartments in neighborhood
• Ping from my tablet to other tablets/doors works
• Can open own building’s door and ping other doors

• Suggests other 5 building doors can be opened
• Did not proceed to exploitation for legal reasons
• Vendor did not deny

• Tablets/doors IP is logical
• Tablet B5 has IP 10.0.2.5
• Building B door is 10.0.2.100

• Note: apartment doors require a physical key to be opened

33

• Chapter 3: Findings

Network traffic
analysis Tablet analysis Findings Disclosure

33

Overall system architecture

eSMART Live app Public room Private room 1

Private room 2

Private room N

OpenSSH 7.4 server

Web Platform eSMART Tablet app

eSMART Manager app

quicksshd SSH server

Technician

Android smartphone XMPP server

Tunnel server

Tablet

34

App-tablet communication

• Smartphone app connects to XMPP server at xmpp.myesmart.net
• Unique Jabber ID (JID) derived from random value + MAC address
• Uses password-based authentication (SASL with DIGEST-MD5 mechanism)

• Username = JID
• Password = SHA512(JID + Random value)

• XMPP server registration is open
• Newly deployed tablets generate credentials and register on first run

• Both tablet and smartphone join a public room on the XMPP server
• Tablet also joins a private room named as {JID}@conference.myesmart.net
• When pairing is successful, the tablet invites the smartphone to its private room
• The tablet interprets all messages received in that private room

35

Possibility for remote exploitation?

• Private room name is basically JID + hardcoded string
• The public room may be used to enumerate tablets and find room names

• If we know a tablet’s JID, can we join the private room?
• I have reported this potential issue to the vendor
• Another researcher had already reported it, and they patched it early 2021
• This was an actual issue in the past!
• Rooms are now invite-only

36

Web platform

• Tablet app listens for commands sent through a web app at
webplatform.myesmart.net

37

SSH tunnel server

• One webplatform command tells tablet to SSH remote port forward on
tunnel.myesmart.net

• eSMART technician can use opened port to connect back into tablet
• SSH server uses password authentication, whose MD5 hash is stored in a text file

on the tablet. Was unable to brute force it (too long)
• However, SSH server runs on the tablet, meaning we control the server

• Modify SSH server so that it logs passwords
• Call eSMART hotline, pretend there is an issue with my tablet
• Wait for technician to remotely troubleshoot, collect password

• All tablets in same deployment/neighborhood have the same password
• Confirmed 2 tablets have same hash, vendor also confirmed same hash for all

neighborhood
• Tablets have a microphone and camera. . . privacy issue, and are rooted => can

control apartment

38

SSH tunnel server - Remediation

• Use public key authentication instead of passwords
• This way, even if the server is untrusted, the private key cannot be compromised

• Turn off SSH server on tablet
• It doesn’t need to run at all times, only start it when necessary

39

Other findings

• The building owner pays for internet access used by tablets
• Enable Wi-Fi hotspot on tablet => get free internet access

• Pairing PIN code spamming
• Spam all possible PIN codes (only 4-digits)
• Wait for someone to start pairing, send PINs fast, get paired first

40

• Chapter 4: Disclosure

Network traffic
analysis Tablet analysis Findings Disclosure

40

Findings summary

• USB debugging enabled by default
• Tablet is rooted
• Can open door of other buildings if on same network
• Usage of Android 4.4 (no more security patches)
• Tablet apps are not obfuscated
• No certificate pinning on Android smartphone app
• SSH server password authentication
• No pairing PIN code rate limiting

41

Disclosure timeline

• December 6, 2021: Disclosure to eSMART team via email
• December 14, 2021: Acknowledge receipt
• December 15, 2021: Receive response to disclosed items
• December 16, 2021: Offer to discuss/clarify findings/impact in person after the

holiday
• January 25, 2022: Send reminder to meet in person
• January 27, 2022: Settle on meeting date and time
• February 15, 2022: Meet in person
• May 10, 2022: Notify eSMART team that talk season was about to start
• May 11, 2022: Receive response saying fix is in progress and will be deployed this

month if final tests are successful
• July 2022: USB debugging disabled, quicksshd uninstalled from tablet
• October 2022: New graphical user interface rolled out to tablet

42

43

Conclusions

• Vendor fixed most critical issues
• Smart devices should be built with security in mind from the start
• Deep integration with house/apartment leads to even worse consequences in case of

breach or failure
• If you want cool research, put smart hardware in a security researcher’s house

44

Thank you

• Questions?

44

