
1

GHIDRA FAULT EMULATION

Roman Korkikian, 15th of November 2022

2

▪ Independent contractor mostly
working for Sony

▪ Specializing in side-channel analysis,
fault attacks, crypto…

▪ >10 year of industrial experience,
PhD

▪ Sony security team has +10 people to

perform internal products analysis

▪ We work with devices and services

(applications)

▪ The team is spread over the globe

About me and the team

3

Agenda

▪ Introduction and reasoning

▪ ARCv2 Ghidra support

▪ AES-128 ARCv2 Emulation

▪ AES-128 Fault Injection

▪ Conclusions

4

Introduction and reasoning

5

▪ Faults are physical stresses (EM pulse or power glitch) that skip instruction, modify

data, or cause another effect that can be used by an attacker

▪ ESP32 was intensively attacked by different people

▪ Fault to bypass secure boot

▪ Fault to bypass encryption process

▪ Fault to read an encryption key from the OTP

▪ NRF52

▪ STM32

▪ and many other devices were reported to be vulnerable to faults

Start with Faults

6

Project Objectives

▪ Often, we need to execute parts of the code when a device is not accessible
(still in production or for other reasons)

▪ We needed a tool:

▪ To emulate fault injection

▪ To perform code fuzzing

▪ To perform other analyses (RE, API calls, countermeasures check, etc.)

▪ Tool requirements:

▪ Adding a new instruction set must be feasible (ARCv2)

▪ A tool shall be used by people of different expertise

7

Tools Selection

Ghidra Radare2 QEMU

Support emulation + + +

Complexity to add

new CPU

+ +/- +/-

User-friendliness + +/- +/-

Performance +/- +/- +

Other functionality

(RE, disassembly,…)

+ + +/-

The selection was made by implementing some instructions for ARCv2

8

Ghidra

Ghidra is a reverse-engineering tool developed by NSA and released to public

(and open source) usage:

▪ Ghidra has similar functionality as IDA Pro

▪ Open source with various features

▪ Integrates disassembly, decompiler and emulation facilities

Ghidra competes with IDA Pro, radare2 and other reverse-engineering tools.

9

Adding ARCv2

10

▪ In my practice, I encountered twice with ARCv2 devices that were difficult to analyse due
to a lack of tools:

▪ This year IDA released ARCv2 decompilation (available as a separate module)

▪ ARCv2 CPUs are mainly used in special-purpose devices

▪ STAR1000P NVMe solid state drive (SSD) controller

▪ Arbe Phoenix High-Resolution Imaging Radar chipset

▪ … but also can be found in IoT/general microcontrollers:

▪ EM9304 - for Bluetooth 5.0 low energy enabled products

▪ PLS10 ultra-low power integrated general-purpose MCU

ARCv2 Where to Find

11

▪ Nicolas IOOSS implemented

ARCompact support for Ghidra

▪ Unfortunately, ARCv2 is

extremely different from

ARCompact

Current State-of-the Art

12

ARCompact

▪ Different instructions

▪ Different Auxiliary registers

ARCv2

▪ Different instructions

▪ Different Auxiliary registers

ARCompact is different from ARCv2

13

How Ghidra Works

Raw binary file: .elf, .exe, …

Load a file

in Ghidra

Ghidra interprets the bytes into instructions

Instructions into a decompiled C-code

14

How Ghidra Works

Raw binary file: .elf, .exe, …

Load a file

in Ghidra

Ghidra interprets the bytes into instructions

Instructions into a decompiled C-code

SLEIGH is

used

to describe

instructions

define token instr16 (16)
F16_MAJOR_OPCODE = (11, 15)
f16_b = (8, 10)
f16_c = (5,7)
f16_i = (3,4)
f16_u = (0,2);

attach variables [f16_b f16_c] [r0 r1 r2 r3 r12 r13 r14 r15];

with : F16_MAJOR_OPCODE = 0b01101 {
:add_s f16_c, f16_b, f16_u is f16_i = 0b00 & f16_b & f16_c

& f16_u{
f16_c = f16_b + f16_u;

}
}

15

Ghidra ARCv2 Example

The way instructions are encoded

Possible instructions to encode

Sub-opcode that define instructions

16

Ghidra ARCv2 Example

define token instr16 (16)
F16_MAJOR_OPCODE = (11, 15)
f16_b = (8, 10)
f16_c = (5,7)
f16_i = (3,4)
f16_u = (0,2);

17

Ghidra ARCv2 Example

define token instr16 (16)
F16_MAJOR_OPCODE = (11, 15)
f16_b = (8, 10)
f16_c = (5,7)
f16_i = (3,4)
f16_u = (0,2);

attach variables [f16_b f16_c] [r0 r1 r2 r3 r12 r13 r14 r15];

18

Ghidra ARCv2 Example

define token instr16 (16)
F16_MAJOR_OPCODE = (11, 15)
f16_b = (8, 10)
f16_c = (5,7)
f16_i = (3,4)
f16_u = (0,2);

attach variables [f16_b f16_c] [r0 r1 r2 r3 r12 r13 r14 r15];

with : F16_MAJOR_OPCODE = 0b01101 {
:add_s f16_c, f16_b, f16_u is f16_i = 0b00 & f16_b & f16_c & f16_u{
f16_c = f16_b + f16_u;

}

:asl_s f16_c, f16_b, f16_u is f16_i = 0b10 & f16_b & f16_c & f16_u{
f16_c = f16_b << f16_u;

}
}

19

Ghidra ARCv2 Example

define token instr16 (16)
F16_MAJOR_OPCODE = (11, 15)
f16_b = (8, 10)
f16_c = (5,7)
f16_i = (3,4)
f16_u = (0,2);

attach variables [f16_b f16_c] [r0 r1 r2 r3 r12 r13 r14 r15];

with : F16_MAJOR_OPCODE = 0b01101 {
:add_s f16_c, f16_b, f16_u is f16_i = 0b00 & f16_b & f16_c & f16_u{…}
:asl_s f16_c, f16_b, f16_u is f16_i = 0b10 & f16_b & f16_c & f16_u{…}

}

0x6BA1 = 0b0110101110100001 shall disassemble in add_s r13, r3, #0x1
F16_MAJOR_OPCODE = (11, 15) -> 01101 Major opcode
f16_b = (8, 10) -> 011 Register #3 – r3
f16_c = (5,7) -> 101 Register #5 – r13
f16_i = (3,4) -> 00 Major opcode + this value gives add_s
f16_u = (0,2) -> 001 Immediate value 1

20

How Ghidra Works

Raw binary file: .elf, .exe, …

Load a file

in Ghidra

0110101110100001

21

How Ghidra Works

Raw binary file: .elf, .exe, …

Load a file

in Ghidra

:add_s f16_c,f16_b,f16_u is …{
f16_c = f16_b + f16_u;

}

0110101110100001

22

How Ghidra Works

Raw binary file: .elf, .exe, …

Load a file

in Ghidra

:add_s f16_c,f16_b,f16_u is …{
f16_c = f16_b + f16_u;

}

0110101110100001

SLEIGH is

used

to describe

instructions

23

▪ Ghidra ARCv2 ISA support includes more than 5500 lines of code:

▪ 380 Sleigh-described instructions (to improve emulation speed, one

instruction can have more than one description)

▪ The ARCv2 support can be found here:

https://github.com/korkikian/ARCv2

▪ Please, keep in mind that this is a work in progress, perhaps some

instructions or corner cases are not correctly supported:

▪ F32_EXT5 class is not supported (DSP mostly)

▪ F32_APEX class is only disassembled (those instructions can be

customized)

Ghidra ARCv2 Example

24

Emulating ARCv2 Binary

25

How Ghidra Emulation Works

Load a file

in Ghidra

Use Ghidra API

Raw binary file: .elf, .exe, …

A script file that steps through the

instructions to emulate the code

26

How Ghidra Emulation Works

Raw binary file: .elf, .exe, …

Load a file

in Ghidra

A script file that steps through the

instructions to emulate the code

Use Ghidra API

ram:000003c6: add_s r13,r3,0x1

STACK
00806B20: 00000000 00000000 c0010000 d8010000 |
00806B30: 20580000 |30000000| 0c010000 babaedfe | .X..0...........
GP
00804000: 02000001 03000000 00000000 00000000 |

CPU context
r0 = 00000033 r1 = 00005850 r2 = 00000000 r3 = 00804030
r4 = 00000000 r5 = 00000000 r6 = 00000000 r7 = 00000000
r8 = 00000000 r9 = 00000000 r10 = 00000000 r11 = 00000000
r12 = 00000000 r13 = 00804031 (new) - 00804000 (old) r14 = 00005820 r15 = 00005818
r16 = 00000030 sp = 00806B34 gp = 00804000 fp = 00806B38

27

▪ AES-128 cryptographic algorithm with an
embedded key (white-box protection) and
a constant plaintext was used for this
presentation

▪ The AES-128 code can be compiled for any
CPU (x64 example below)

▪ The same code was compiled for ARCv2

Emulating ARCv2 Binary

28

AES-128 ARCv2 Disassembly

Binary decompilationARCv2 disassembly

29

AES-128 ARCv2 Disassembly

▪ Ghidra decompilation looks alike with the initial C code

▪ Decompilation is achieved when the instructions are correctly described with Sleigh

▪ Complex instructions are more difficult to decompile, so optimise instructions as much as
possible

30

▪ A python script that sets the initial CPU state:
▪ Set stack pointer, program counter and registers

▪ Initialize memory if needed

▪ Define success conditions

▪ Then step by step execute disassembled instructions

▪ A script controls CPU registers and memory content at any emulation step

AES-128 ARCv2 Emulation

for inst_id in range(max_num_instructions):
executionAddress = emuHelper.getExecutionAddress()
success = emuHelper.step(monitor)
Read CPU registers, memory, and perform other operations

31

AES-128 ARCv2 Emulation

Our emulation starts from here (executed instruction ID is 0)

Entry to the function (next slide shows instruction emulation)

32

AES-128 ARCv2 Emulation

0 ram:80000368: enter_s {r13,blink}
Stack
1FFFFFA0: 00000000 00000000 00000000 00000000 |
1FFFFFB0: 00000000 00000000 00000000 00000000 |
1FFFFFC0: 00000000 00000000 00000000 00000000 |
1FFFFFD0: 00000000 00000000 00000000 00000000 |
1FFFFFE0: 00000000 00000000 00000000 00000000 |
1FFFFFF0: 00000000 00000000 |efbeadde| *babaedfe* |

r0 = 00000000 r1 = 00000000 r2 = 00000000 r3 = 00000000
r4 = 00000000 r5 = 00000000 r6 = 00000000 r7 = 00000000
r8 = 00000000 r9 = 00000000 r10 = 00000000 r11 = 00000000
r12 = 00000000 r13 = FEEDBABA r14 = 00000000 r15 = 00000000
r16 = 00000000 sp = 1FFFFFF8 (new) - 20000000 (old)
blink = DEADBEEF
C = 00000000 V = 00000000 N = 00000000 Z = 00000000
...

Instruction at the

current address

33

AES-128 ARCv2 Emulation

0 ram:80000368: enter_s {r13,blink}
Stack
1FFFFFA0: 00000000 00000000 00000000 00000000 |
1FFFFFB0: 00000000 00000000 00000000 00000000 |
1FFFFFC0: 00000000 00000000 00000000 00000000 |
1FFFFFD0: 00000000 00000000 00000000 00000000 |
1FFFFFE0: 00000000 00000000 00000000 00000000 |
1FFFFFF0: 00000000 00000000 |efbeadde| *babaedfe* |

r0 = 00000000 r1 = 00000000 r2 = 00000000 r3 = 00000000
r4 = 00000000 r5 = 00000000 r6 = 00000000 r7 = 00000000
r8 = 00000000 r9 = 00000000 r10 = 00000000 r11 = 00000000
r12 = 00000000 r13 = FEEDBABA r14 = 00000000 r15 = 00000000
r16 = 00000000 sp = 1FFFFFF8 (new) - 20000000 (old)
blink = DEADBEEF
C = 00000000 V = 00000000 N = 00000000 Z = 00000000
...

CPU stack

34

AES-128 ARCv2 Emulation

0 ram:80000368: enter_s {r13,blink}
Stack
1FFFFFA0: 00000000 00000000 00000000 00000000 |
1FFFFFB0: 00000000 00000000 00000000 00000000 |
1FFFFFC0: 00000000 00000000 00000000 00000000 |
1FFFFFD0: 00000000 00000000 00000000 00000000 |
1FFFFFE0: 00000000 00000000 00000000 00000000 |
1FFFFFF0: 00000000 00000000 |efbeadde| *babaedfe* |

r0 = 00000000 r1 = 00000000 r2 = 00000000 r3 = 00000000
r4 = 00000000 r5 = 00000000 r6 = 00000000 r7 = 00000000
r8 = 00000000 r9 = 00000000 r10 = 00000000 r11 = 00000000
r12 = 00000000 r13 = FEEDBABA r14 = 00000000 r15 = 00000000
r16 = 00000000 sp = 1FFFFFF8 (new) - 20000000 (old)
blink = DEADBEEF
C = 00000000 V = 00000000 N = 00000000 Z = 00000000
...

CPU registers

35

AES-128 ARCv2 Emulation

0 ram:80000368: enter_s {r13,blink}
Stack
1FFFFFA0: 00000000 00000000 00000000 00000000 |
1FFFFFB0: 00000000 00000000 00000000 00000000 |
1FFFFFC0: 00000000 00000000 00000000 00000000 |
1FFFFFD0: 00000000 00000000 00000000 00000000 |
1FFFFFE0: 00000000 00000000 00000000 00000000 |
1FFFFFF0: 00000000 00000000 |efbeadde| *babaedfe* |

r0 = 00000000 r1 = 00000000 r2 = 00000000 r3 = 00000000
r4 = 00000000 r5 = 00000000 r6 = 00000000 r7 = 00000000
r8 = 00000000 r9 = 00000000 r10 = 00000000 r11 = 00000000
r12 = 00000000 r13 = FEEDBABA r14 = 00000000 r15 = 00000000
r16 = 00000000 sp = 1FFFFFF8 (new) - 20000000 (old)
blink = DEADBEEF
C = 00000000 V = 00000000 N = 00000000 Z = 00000000
...

Registers used by the current

instruction

36

AES-128 ARCv2 Emulation

Emulation continues, and another function is entered.

Emulating entry to the function, but this time we see that some stack values are populated by previous instructions.

37

AES-128 ARCv2 Emulation

109 ram:80000348: enter_s {r13,blink}
Stack
1FFFFFA0: 00000000 00000000 00000000 00000000 |
1FFFFFB0: 00000000 00000000 00000000 00000000 |
1FFFFFC0: 00000000 00000000 00000000 00000000 |
1FFFFFD0: |84030080| 00000000 3143f6a8 885a308d |1C...Z0.
1FFFFFE0: 313198a2 e0370734 00000000 00000000 | 11...7.4........
1FFFFFF0: 00000000 00000000 efbeadde babaedfe |
CPU context
r0 = 1FFFFFD8 r1 = 1FFFFFE8 r2 = 00000000 r3 = 1FFFFFE8
r4 = 00000000 r5 = 00000000 r6 = 00000000 r7 = 00000000
r8 = 00000000 r9 = 00000000 r10 = 00000000 r11 = 00000000
r12 = 00000034 r13 = 00000000 r14 = 00000000 r15 = 00000000
r16 = 00000000 sp = 1FFFFFD0 (new) - 1FFFFFD8 (old)
blink = 80000384
C = 00000000 V = 00000000 N = 00000000 Z = 00000001

...

Plaintext to encrypt

38

AES-128 ARCv2 Emulation

109 ram:80000348: enter_s {r13,blink}
Stack
1FFFFFA0: 00000000 00000000 00000000 00000000 |
1FFFFFB0: 00000000 00000000 00000000 00000000 |
1FFFFFC0: 00000000 00000000 00000000 00000000 |
1FFFFFD0: |84030080| 00000000 3143f6a8 885a308d |1C...Z0.
1FFFFFE0: 313198a2 e0370734 00000000 00000000 | 11...7.4........
1FFFFFF0: 00000000 00000000 efbeadde babaedfe |
CPU context
r0 = 1FFFFFD8 r1 = 1FFFFFE8 r2 = 00000000 r3 = 1FFFFFE8
r4 = 00000000 r5 = 00000000 r6 = 00000000 r7 = 00000000
r8 = 00000000 r9 = 00000000 r10 = 00000000 r11 = 00000000
r12 = 00000034 r13 = 00000000 r14 = 00000000 r15 = 00000000
r16 = 00000000 sp = 1FFFFFD0 (new) - 1FFFFFD8 (old)
blink = 80000384
C = 00000000 V = 00000000 N = 00000000 Z = 00000001

...

Plaintext to encrypt

39

AES-128 ARCv2 Emulation

Ciphertext taken

from a stack

Continue emulation until we get the ciphertext

40

Plaintext

AES-128 ARCv2 Emulation

1446 ram:80000366: leave_s {r13,blink,pcl}
Stack
1FFFFFA0: 5c030080 e8ffff1f 00000000 e8ffff1f | \...............
1FFFFFB0: a8f64331 8d305a88 a2983131 340737e0 | ..C1.0Z...114.7.
1FFFFFC0: 1e92c3b7 69ca708d 26d0d8a8 a6e3b459 |i.p........Y
1FFFFFD0: 84030080 00000000 |3143f6a8| 885a308d |1C...Z0.
1FFFFFE0: 313198a2 e0370734 b7c3921e 8d70ca69 | 11...7.4.....p.i
1FFFFFF0: a8d8d026 59b4e3a6 efbeadde babaedfe |Y...........

r0 = 1FFFFFC0 r1 = 1FFFFFE8 r2 = 00000004 r3 = 59B4E3A6
r4 = 2F2F715E r5 = C65197C6 r6 = 00000001 r7 = 00000096
r8 = 00000000 r9 = 00000000 r10 = 00000000 r11 = 00000000
r12 = 1FFFFFF4 r13 = 00000000 (new) - 1FFFFFE8 (old) r14 = 00000000 r15 = 00000000
r16 = 00000000 sp = 1FFFFFD8 (new) - 1FFFFFD0 (old)
blink = 80000384 (new) - 80000364 (old)
C = 00000000 V = 00000000 N = 00000000 Z = 00000001

Ciphertext

41

Fault Injection Into AES-128

ARCv2

42

Attacks on White-Box Crypto

▪ White-Box Cryptography mathematically hides the master key into the

operations/tables

▪ Three types of attacks are possible:

▪ Differential Fault Attacks (emulation or instrumentation)

▪ Reverse engineering + mathematical attacks (collisions and others)

▪ Differential Computation Analysis – side-channels for WBC (emulation

or instrumentation)

43

▪ WBC can not change AES structure: Sbox, ShiftRows and MixColumn are present in the code

▪ One byte before the last MixColumn operation is the simplest fault attack

Attacks on White-Box Crypto

Sbox ShiftRows MixColumn AddKey

Round 9

Sbox ShiftRows AddKey

Round 10

Round Key 9

Round Key 10

Ciphertext

44

State-of-the-Art Tools for WBC

- Dynamic binary instrumentation (Intel PIN, Valgrind)

- One of the most popular tools (Philippe Teuwen) - Qemu based (Unicorn) emulation

- Radare2 based emulation - Ghidra based emulation

45

▪ Practical fault injection is somewhat unpredictable (we don’t know in

advance which effects are achievable)

▪ Most common faults observed in various evaluations:

▪ Instruction skipping

▪ Register modification

▪ Those fault models can be emulated with Ghidra

Fault Models

46

▪ An instruction skipping fault

Instruction Skipping Faults in AES-128

for inst_id in range(max_num_instructions):
executionAddress = emuHelper.getExecutionAddress()
inst = getInstructionAt(executionAddress)

if inst_id in fault_instr_index and fault_type == 'skip':
next_inst = inst.getNext()
next_addr = getInstructionContext().getAddress().getAddressableWordOffset()
emuHelper.writeRegister(emuHelper.getPCRegister(), next_addr)
continue

success = emuHelper.step(monitor)

Get the next instruction

before emulating current

Update PC value with a

next instruction address

Skip current instruction

emulation

47

Instruction Skipping Faults in AES-128

A fault at early rounds totally

modifies a ciphertext

A fault at a not-taken branch

does not corrupt ciphertext

A fault at latest steps results in

a required error pattern

48

▪ A register modification fault

Register Modification Fault in AES-128

inst = getInstructionAt(executionAddress)

if inst_id in fault_instr_index and fault_type == '1bit':
num_operands = inst.getNumOperands()
reg0 = inst.getRegister(0)

if inst.getOperandRefType(0) == RefType.READ_WRITE and reg0:
prev_value = emuHelper.readRegister(reg0)
next_value = prev_value ^ 0x01
emuHelper.writeRegister(reg0, next_value)
up_value = emuHelper.readRegister(reg0)

Read a register, update

its value and write back

49

Register Modification Fault in AES-128

A fault at early rounds totally

modifies the ciphertext (an

instruction skipping at this

address modifies a ciphertext as

well)

A fault at certain instructions

does not corrupt ciphertext but

changes the number of

emulated instructions

A fault at latest steps results in

a required error pattern

50

▪ Security testing

▪ Fuzzing:
www.protect.airbus.com/blog/fuzzing-exotic-arch-with-afl-using-ghidra-emulator/

▪ Attacks on White-Box Cryptography:
www.blackhat.com/docs/eu-15/materials/eu-15-Sanfelix-Unboxing-The-White-Box-Practical-
Attacks-Against-Obfuscated-Ciphers-wp.pdf

▪ Functionality testing

▪ Algorithm optimisation

▪ Verification

Application of Emulation

51

Conclusions

▪ Ghidra emulation added to the list of fault injection tools

▪ Faults: instruction skipping, register modification and others

▪ Ghidra ARCv2 support is released (and being worked on)

▪ Reversing and emulating a rare CPU architecture is feasible

52

Useful Links

▪ Current work:
https://github.com/korkikian/ARCv2

▪ ARCompact:
https://github.com/niooss-ledger/ghidra

▪ SLEIGH description:
https://fossies.org/linux/ghidra/GhidraDocs/languages/html/sleigh.html

▪ Ghidra:
https://github.com/NationalSecurityAgency/ghidra

▪ Side-channel Marvels:
https://github.com/SideChannelMarvels

▪ Radare2 fault emulation:
https://github.com/kudelskisecurity/radare2-fault-simulator

▪ Riscure Fisim
https://github.com/Riscure/FiSim

53

THANK YOU!

THANK YOU!

My contacts:

roman.korkikian@gmail.com
+41799062793

SONY is a registered trademark of Sony Corporation.

Names of Sony products and services are the registered trademarks and/or trademarks of Sony Corporation or its Group companies.

Other company names and product names are registered trademarks and/or trademarks of the respective companies.

