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▪ Independent contractor mostly 
working for Sony

▪ Specializing in side-channel analysis, 
fault attacks, crypto…

▪ >10 year of industrial experience, 
PhD

▪ Sony security team has +10 people to 

perform internal products analysis

▪ We work with devices and services 

(applications)

▪ The team is spread over the globe 

About me and the team
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Agenda

▪ Introduction and reasoning

▪ ARCv2 Ghidra support

▪ AES-128 ARCv2 Emulation

▪ AES-128 Fault Injection

▪ Conclusions
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Introduction and reasoning
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▪ Faults are physical stresses (EM pulse or power glitch) that skip instruction, modify 

data, or cause another effect that can be used by an attacker

▪ ESP32 was intensively attacked by different people

▪ Fault to bypass secure boot

▪ Fault to bypass encryption process

▪ Fault to read an encryption key from the OTP

▪ NRF52

▪ STM32

▪ and many other devices were reported to be vulnerable to faults

Start with Faults
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Project Objectives

▪ Often, we need to execute parts of the code when a device is not accessible 
(still in production or for other reasons)

▪ We needed a tool:

▪ To emulate fault injection

▪ To perform code fuzzing

▪ To perform other analyses (RE,  API calls, countermeasures check, etc.)

▪ Tool requirements:

▪ Adding a new instruction set must be feasible (ARCv2)

▪ A tool shall be used by people of different expertise
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Tools Selection

Ghidra Radare2 QEMU

Support emulation + + +

Complexity to add 

new CPU

+ +/- +/-

User-friendliness + +/- +/-

Performance +/- +/- +

Other functionality 

(RE, disassembly,…)

+ + +/-

The selection was made by implementing some instructions for ARCv2
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Ghidra

Ghidra is a reverse-engineering tool developed by NSA and released to public 

(and open source) usage:

▪ Ghidra has similar functionality as IDA Pro

▪ Open source with various features

▪ Integrates disassembly, decompiler and emulation facilities

Ghidra competes with IDA Pro, radare2 and other reverse-engineering tools.
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Adding ARCv2
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▪ In my practice, I encountered twice with ARCv2 devices that were difficult to analyse due 
to a lack of tools:

▪ This year IDA released ARCv2 decompilation (available as a separate module)

▪ ARCv2 CPUs are mainly used in special-purpose devices 

▪ STAR1000P NVMe solid state drive (SSD) controller

▪ Arbe Phoenix High-Resolution Imaging Radar chipset

▪ … but also can be found in IoT/general microcontrollers:

▪ EM9304 - for Bluetooth 5.0 low energy enabled products

▪ PLS10 ultra-low power integrated general-purpose MCU

ARCv2 Where to Find
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▪ Nicolas IOOSS implemented 

ARCompact support for Ghidra

▪ Unfortunately,  ARCv2 is 

extremely different from 

ARCompact

Current State-of-the Art
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ARCompact

▪ Different instructions

▪ Different Auxiliary registers

ARCv2

▪ Different instructions

▪ Different Auxiliary registers

ARCompact is different from ARCv2
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How Ghidra Works

Raw binary file: .elf, .exe, …

Load a file 

in Ghidra

Ghidra interprets the bytes into instructions

Instructions into a decompiled C-code
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How Ghidra Works

Raw binary file: .elf, .exe, …

Load a file 

in Ghidra

Ghidra interprets the bytes into instructions

Instructions into a decompiled C-code

SLEIGH is 

used 

to describe 

instructions

define token instr16 (16)
F16_MAJOR_OPCODE = (11, 15)
f16_b            = (8, 10)
f16_c            = (5,7)
f16_i            = (3,4)
f16_u            = (0,2);

attach variables [f16_b f16_c] [r0 r1 r2 r3 r12 r13 r14 r15];

with : F16_MAJOR_OPCODE = 0b01101 {
:add_s f16_c, f16_b, f16_u is f16_i = 0b00 & f16_b & f16_c 

& f16_u{
f16_c = f16_b + f16_u;

}
}
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Ghidra ARCv2 Example

The way instructions are encoded

Possible instructions to encode

Sub-opcode that define instructions
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Ghidra ARCv2 Example

define token instr16 (16)
F16_MAJOR_OPCODE = (11, 15)
f16_b            = (8, 10)
f16_c            = (5,7)
f16_i            = (3,4)
f16_u            = (0,2);
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Ghidra ARCv2 Example

define token instr16 (16)
F16_MAJOR_OPCODE = (11, 15)
f16_b            = (8, 10)
f16_c            = (5,7)
f16_i            = (3,4)
f16_u            = (0,2);

attach variables [f16_b f16_c] [r0 r1 r2 r3 r12 r13 r14 r15];
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Ghidra ARCv2 Example

define token instr16 (16)
F16_MAJOR_OPCODE = (11, 15)
f16_b            = (8, 10)
f16_c            = (5,7)
f16_i            = (3,4)
f16_u            = (0,2);

attach variables [f16_b f16_c] [r0 r1 r2 r3 r12 r13 r14 r15];

with : F16_MAJOR_OPCODE = 0b01101 {
:add_s f16_c, f16_b, f16_u is f16_i = 0b00 & f16_b & f16_c & f16_u{
f16_c = f16_b + f16_u;

}

:asl_s f16_c, f16_b, f16_u is f16_i = 0b10 & f16_b & f16_c & f16_u{
f16_c = f16_b << f16_u;

}
}
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Ghidra ARCv2 Example

define token instr16 (16)
F16_MAJOR_OPCODE = (11, 15)
f16_b            = (8, 10)
f16_c            = (5,7)
f16_i            = (3,4)
f16_u            = (0,2);

attach variables [f16_b f16_c] [r0 r1 r2 r3 r12 r13 r14 r15];

with : F16_MAJOR_OPCODE = 0b01101 {
:add_s f16_c, f16_b, f16_u is f16_i = 0b00 & f16_b & f16_c & f16_u{…}
:asl_s f16_c, f16_b, f16_u is f16_i = 0b10 & f16_b & f16_c & f16_u{…}

}

0x6BA1 = 0b0110101110100001 shall disassemble in add_s r13, r3, #0x1
F16_MAJOR_OPCODE = (11, 15)   -> 01101  Major opcode
f16_b            = (8, 10)    -> 011    Register #3 – r3
f16_c            = (5,7)      -> 101    Register #5 – r13
f16_i            = (3,4)      -> 00     Major opcode + this value gives add_s
f16_u            = (0,2)      -> 001    Immediate value 1
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How Ghidra Works

Raw binary file: .elf, .exe, …

Load a file 

in Ghidra

0110101110100001
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How Ghidra Works

Raw binary file: .elf, .exe, …

Load a file 

in Ghidra

:add_s f16_c,f16_b,f16_u is …{
f16_c = f16_b + f16_u;

}

0110101110100001
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How Ghidra Works

Raw binary file: .elf, .exe, …

Load a file 

in Ghidra

:add_s f16_c,f16_b,f16_u is …{
f16_c = f16_b + f16_u;

}

0110101110100001

SLEIGH is 

used 

to describe 

instructions



23

▪ Ghidra ARCv2 ISA support includes more than 5500 lines of code:

▪ 380 Sleigh-described instructions (to improve emulation speed, one 

instruction can have more than one description)

▪ The ARCv2 support can be found here:

https://github.com/korkikian/ARCv2

▪ Please, keep in mind that this is a work in progress, perhaps some 

instructions or corner cases are not correctly supported:

▪ F32_EXT5 class is not supported (DSP mostly)

▪ F32_APEX class is only disassembled (those instructions can be 

customized)

Ghidra ARCv2 Example
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Emulating ARCv2 Binary
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How Ghidra Emulation Works

Load a file 

in Ghidra

Use Ghidra API

Raw binary file: .elf, .exe, …

A script file that steps through the 

instructions to emulate the code
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How Ghidra Emulation Works

Raw binary file: .elf, .exe, …

Load a file 

in Ghidra

A script file that steps through the 

instructions to emulate the code

Use Ghidra API

ram:000003c6: add_s r13,r3,0x1 

STACK
00806B20: 00000000 00000000 c0010000 d8010000 | ................ 
00806B30: 20580000 |30000000| 0c010000 babaedfe | .X..0........... 
GP
00804000: 02000001 03000000 00000000 00000000 | ................ 

CPU context
r0 = 00000033 r1 = 00005850                        r2 = 00000000 r3 = 00804030
r4 = 00000000 r5 = 00000000                        r6 = 00000000 r7 = 00000000
r8 = 00000000 r9 = 00000000                        r10 = 00000000 r11 = 00000000
r12 = 00000000 r13 = 00804031 (new) - 00804000 (old) r14 = 00005820 r15 = 00005818
r16 = 00000030 sp = 00806B34                        gp = 00804000 fp = 00806B38
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▪ AES-128 cryptographic algorithm with an 
embedded key (white-box protection) and 
a constant plaintext was used for this 
presentation

▪ The AES-128 code can be compiled for any 
CPU (x64 example below)

▪ The same code was compiled for ARCv2

Emulating ARCv2 Binary
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AES-128 ARCv2 Disassembly

Binary decompilationARCv2 disassembly
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AES-128 ARCv2 Disassembly

▪ Ghidra decompilation looks alike with the initial C code

▪ Decompilation is achieved when the instructions are correctly described with Sleigh

▪ Complex instructions are more difficult to decompile, so optimise instructions as much as 
possible
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▪ A python script that sets the initial CPU state:
▪ Set stack pointer, program counter and registers

▪ Initialize memory if needed

▪ Define success conditions

▪ Then step by step execute disassembled instructions

▪ A script controls CPU registers and memory content at any emulation step

AES-128 ARCv2 Emulation

for inst_id in range(max_num_instructions):
executionAddress = emuHelper.getExecutionAddress()
success = emuHelper.step(monitor)
# Read CPU registers, memory, and perform other operations



31

AES-128 ARCv2 Emulation

Our emulation starts from here (executed instruction ID is 0)

Entry to the function (next slide shows instruction emulation)
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AES-128 ARCv2 Emulation

0 ram:80000368: enter_s {r13,blink} 
Stack
1FFFFFA0: 00000000 00000000 00000000 00000000 | ................ 
1FFFFFB0: 00000000 00000000 00000000 00000000 | ................ 
1FFFFFC0: 00000000 00000000 00000000 00000000 | ................ 
1FFFFFD0: 00000000 00000000 00000000 00000000 | ................ 
1FFFFFE0: 00000000 00000000 00000000 00000000 | ................ 
1FFFFFF0: 00000000 00000000 |efbeadde| *babaedfe* | ................ 

r0 = 00000000 r1 = 00000000 r2 = 00000000 r3 = 00000000
r4 = 00000000 r5 = 00000000 r6 = 00000000 r7 = 00000000
r8 = 00000000 r9 = 00000000 r10 = 00000000 r11 = 00000000
r12 = 00000000 r13 = FEEDBABA r14 = 00000000 r15 = 00000000
r16 = 00000000 sp = 1FFFFFF8 (new) - 20000000 (old) 
blink = DEADBEEF
C = 00000000 V = 00000000 N = 00000000 Z = 00000000
...

Instruction at the 

current address
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AES-128 ARCv2 Emulation

0 ram:80000368: enter_s {r13,blink} 
Stack
1FFFFFA0: 00000000 00000000 00000000 00000000 | ................ 
1FFFFFB0: 00000000 00000000 00000000 00000000 | ................ 
1FFFFFC0: 00000000 00000000 00000000 00000000 | ................ 
1FFFFFD0: 00000000 00000000 00000000 00000000 | ................ 
1FFFFFE0: 00000000 00000000 00000000 00000000 | ................ 
1FFFFFF0: 00000000 00000000 |efbeadde| *babaedfe* | ................ 

r0 = 00000000 r1 = 00000000 r2 = 00000000 r3 = 00000000
r4 = 00000000 r5 = 00000000 r6 = 00000000 r7 = 00000000
r8 = 00000000 r9 = 00000000 r10 = 00000000 r11 = 00000000
r12 = 00000000 r13 = FEEDBABA r14 = 00000000 r15 = 00000000
r16 = 00000000 sp = 1FFFFFF8 (new) - 20000000 (old) 
blink = DEADBEEF
C = 00000000 V = 00000000 N = 00000000 Z = 00000000
...

CPU stack
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AES-128 ARCv2 Emulation

0 ram:80000368: enter_s {r13,blink} 
Stack
1FFFFFA0: 00000000 00000000 00000000 00000000 | ................ 
1FFFFFB0: 00000000 00000000 00000000 00000000 | ................ 
1FFFFFC0: 00000000 00000000 00000000 00000000 | ................ 
1FFFFFD0: 00000000 00000000 00000000 00000000 | ................ 
1FFFFFE0: 00000000 00000000 00000000 00000000 | ................ 
1FFFFFF0: 00000000 00000000 |efbeadde| *babaedfe* | ................ 

r0 = 00000000 r1 = 00000000 r2 = 00000000 r3 = 00000000
r4 = 00000000 r5 = 00000000 r6 = 00000000 r7 = 00000000
r8 = 00000000 r9 = 00000000 r10 = 00000000 r11 = 00000000
r12 = 00000000 r13 = FEEDBABA r14 = 00000000 r15 = 00000000
r16 = 00000000 sp = 1FFFFFF8 (new) - 20000000 (old) 
blink = DEADBEEF
C = 00000000 V = 00000000 N = 00000000 Z = 00000000
...

CPU registers
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AES-128 ARCv2 Emulation

0 ram:80000368: enter_s {r13,blink} 
Stack
1FFFFFA0: 00000000 00000000 00000000 00000000 | ................ 
1FFFFFB0: 00000000 00000000 00000000 00000000 | ................ 
1FFFFFC0: 00000000 00000000 00000000 00000000 | ................ 
1FFFFFD0: 00000000 00000000 00000000 00000000 | ................ 
1FFFFFE0: 00000000 00000000 00000000 00000000 | ................ 
1FFFFFF0: 00000000 00000000 |efbeadde| *babaedfe* | ................ 

r0 = 00000000 r1 = 00000000 r2 = 00000000 r3 = 00000000
r4 = 00000000 r5 = 00000000 r6 = 00000000 r7 = 00000000
r8 = 00000000 r9 = 00000000 r10 = 00000000 r11 = 00000000
r12 = 00000000 r13 = FEEDBABA r14 = 00000000 r15 = 00000000
r16 = 00000000 sp = 1FFFFFF8 (new) - 20000000 (old) 
blink = DEADBEEF
C = 00000000 V = 00000000 N = 00000000 Z = 00000000
...

Registers used by the current 

instruction 
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AES-128 ARCv2 Emulation

Emulation continues, and another function is entered.

Emulating entry to the function, but this time we see that some stack values are populated by previous instructions.
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AES-128 ARCv2 Emulation

109 ram:80000348: enter_s {r13,blink}
Stack 
1FFFFFA0: 00000000 00000000 00000000 00000000 | ................ 
1FFFFFB0: 00000000 00000000 00000000 00000000 | ................ 
1FFFFFC0: 00000000 00000000 00000000 00000000 | ................ 
1FFFFFD0: |84030080| 00000000 3143f6a8 885a308d | ........1C...Z0. 
1FFFFFE0: 313198a2 e0370734 00000000 00000000 | 11...7.4........ 
1FFFFFF0: 00000000 00000000 efbeadde babaedfe | ................ 
CPU context
r0 = 1FFFFFD8 r1 = 1FFFFFE8 r2 = 00000000 r3 = 1FFFFFE8
r4 = 00000000 r5 = 00000000 r6 = 00000000 r7 = 00000000
r8 = 00000000 r9 = 00000000 r10 = 00000000 r11 = 00000000
r12 = 00000034 r13 = 00000000 r14 = 00000000 r15 = 00000000
r16 = 00000000 sp = 1FFFFFD0 (new) - 1FFFFFD8 (old)
blink = 80000384
C = 00000000 V = 00000000 N = 00000000 Z = 00000001

...

Plaintext to encrypt



38

AES-128 ARCv2 Emulation

109 ram:80000348: enter_s {r13,blink}
Stack 
1FFFFFA0: 00000000 00000000 00000000 00000000 | ................ 
1FFFFFB0: 00000000 00000000 00000000 00000000 | ................ 
1FFFFFC0: 00000000 00000000 00000000 00000000 | ................ 
1FFFFFD0: |84030080| 00000000 3143f6a8 885a308d | ........1C...Z0. 
1FFFFFE0: 313198a2 e0370734 00000000 00000000 | 11...7.4........ 
1FFFFFF0: 00000000 00000000 efbeadde babaedfe | ................ 
CPU context
r0 = 1FFFFFD8 r1 = 1FFFFFE8 r2 = 00000000 r3 = 1FFFFFE8
r4 = 00000000 r5 = 00000000 r6 = 00000000 r7 = 00000000
r8 = 00000000 r9 = 00000000 r10 = 00000000 r11 = 00000000
r12 = 00000034 r13 = 00000000 r14 = 00000000 r15 = 00000000
r16 = 00000000 sp = 1FFFFFD0 (new) - 1FFFFFD8 (old)
blink = 80000384
C = 00000000 V = 00000000 N = 00000000 Z = 00000001

...

Plaintext to encrypt
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AES-128 ARCv2 Emulation

Ciphertext taken 

from a stack

Continue emulation until we get the ciphertext
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Plaintext

AES-128 ARCv2 Emulation

1446 ram:80000366: leave_s {r13,blink,pcl} 
Stack
1FFFFFA0: 5c030080 e8ffff1f 00000000 e8ffff1f | \............... 
1FFFFFB0: a8f64331 8d305a88 a2983131 340737e0 | ..C1.0Z...114.7. 
1FFFFFC0: 1e92c3b7 69ca708d 26d0d8a8 a6e3b459 | ....i.p........Y 
1FFFFFD0: 84030080 00000000 |3143f6a8| 885a308d | ........1C...Z0. 
1FFFFFE0: 313198a2 e0370734 b7c3921e 8d70ca69 | 11...7.4.....p.i
1FFFFFF0: a8d8d026 59b4e3a6 efbeadde babaedfe | ....Y........... 

r0 = 1FFFFFC0 r1 = 1FFFFFE8 r2 = 00000004 r3 = 59B4E3A6
r4 = 2F2F715E r5 = C65197C6 r6 = 00000001 r7 = 00000096
r8 = 00000000 r9 = 00000000 r10 = 00000000 r11 = 00000000
r12 = 1FFFFFF4 r13 = 00000000 (new) - 1FFFFFE8 (old) r14 = 00000000 r15 = 00000000
r16 = 00000000 sp = 1FFFFFD8 (new) - 1FFFFFD0 (old)
blink = 80000384 (new) - 80000364 (old)
C = 00000000 V = 00000000 N = 00000000 Z = 00000001

Ciphertext
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Fault Injection Into AES-128 

ARCv2
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Attacks on White-Box Crypto

▪ White-Box Cryptography mathematically hides the master key into the 

operations/tables

▪ Three types of attacks are possible:

▪ Differential Fault Attacks (emulation or instrumentation)

▪ Reverse engineering + mathematical attacks (collisions and others)

▪ Differential Computation Analysis – side-channels for WBC (emulation 

or instrumentation)
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▪ WBC can not change AES structure: Sbox, ShiftRows and MixColumn are present in the code

▪ One byte before the last MixColumn operation is the simplest fault attack 

Attacks on White-Box Crypto

Sbox ShiftRows MixColumn AddKey

Round 9

Sbox ShiftRows AddKey

Round 10

Round Key 9

Round Key 10

Ciphertext
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State-of-the-Art Tools for WBC 

- Dynamic binary instrumentation (Intel PIN, Valgrind)

- One of the most popular tools (Philippe Teuwen) - Qemu based (Unicorn) emulation

- Radare2 based emulation - Ghidra based emulation
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▪ Practical fault injection is somewhat unpredictable (we don’t know in 

advance which effects are achievable)

▪ Most common faults observed in various evaluations:

▪ Instruction skipping

▪ Register modification

▪ Those fault models can be emulated with Ghidra

Fault Models
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▪ An instruction skipping fault

Instruction Skipping Faults in AES-128

for inst_id in range(max_num_instructions):
executionAddress = emuHelper.getExecutionAddress()
inst = getInstructionAt(executionAddress)

if inst_id in fault_instr_index and fault_type == 'skip':
next_inst = inst.getNext()
next_addr = getInstructionContext().getAddress().getAddressableWordOffset()
emuHelper.writeRegister(emuHelper.getPCRegister(), next_addr)
continue

success = emuHelper.step(monitor)

Get the next instruction 

before emulating current

Update PC value with a 

next instruction address

Skip current instruction 

emulation
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Instruction Skipping Faults in AES-128

A fault at early rounds totally 

modifies a ciphertext

A fault at a not-taken branch 

does not corrupt ciphertext

A fault at latest steps results in 

a required error pattern
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▪ A register modification fault

Register Modification Fault in AES-128

inst = getInstructionAt(executionAddress)

if inst_id in fault_instr_index and fault_type == '1bit':
num_operands = inst.getNumOperands() 
reg0         = inst.getRegister(0)

if inst.getOperandRefType(0) == RefType.READ_WRITE and reg0:
prev_value = emuHelper.readRegister(reg0)
next_value = prev_value ^ 0x01
emuHelper.writeRegister(reg0, next_value)
up_value = emuHelper.readRegister(reg0)

Read a register, update 

its value and write back
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Register Modification Fault in AES-128

A fault at early rounds totally 

modifies the ciphertext (an 

instruction skipping at this 

address modifies a ciphertext as 

well)

A fault at certain instructions 

does not corrupt ciphertext but 

changes the number of 

emulated instructions

A fault at latest steps results in 

a required error pattern
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▪ Security testing

▪ Fuzzing: 
www.protect.airbus.com/blog/fuzzing-exotic-arch-with-afl-using-ghidra-emulator/

▪ Attacks on White-Box Cryptography:
www.blackhat.com/docs/eu-15/materials/eu-15-Sanfelix-Unboxing-The-White-Box-Practical-
Attacks-Against-Obfuscated-Ciphers-wp.pdf

▪ Functionality testing

▪ Algorithm optimisation

▪ Verification

Application of Emulation 



51

Conclusions

▪ Ghidra emulation added to the list of fault injection tools

▪ Faults: instruction skipping, register modification and others

▪ Ghidra ARCv2 support is released (and being worked on)

▪ Reversing and emulating a rare CPU architecture is feasible
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Useful Links

▪ Current work:
https://github.com/korkikian/ARCv2

▪ ARCompact:
https://github.com/niooss-ledger/ghidra

▪ SLEIGH description:
https://fossies.org/linux/ghidra/GhidraDocs/languages/html/sleigh.html

▪ Ghidra:
https://github.com/NationalSecurityAgency/ghidra

▪ Side-channel Marvels:
https://github.com/SideChannelMarvels

▪ Radare2 fault emulation:
https://github.com/kudelskisecurity/radare2-fault-simulator

▪ Riscure Fisim
https://github.com/Riscure/FiSim
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THANK YOU!

THANK YOU!

My contacts:

roman.korkikian@gmail.com
+41799062793

SONY is a registered trademark of Sony Corporation.

Names of Sony products and services are the registered trademarks and/or trademarks of Sony Corporation or its Group companies.

Other company names and product names are registered trademarks and/or trademarks of the respective companies.


