Benchmarking memory
allocators

Julien Voisin — dustri.org

V)

BLACK ALPS

Story time

My infra at home is running on Alpine Linux, using musl libc.
Musl libc has its own memory allocator.

Musl old allocator used to suck apparently.

Fortunately, musl libc’s malloc-ng is better™.

But what does better™ actually means?

o O O O O

(@)

Speed?

Security?

Simplicity?

RAM consumption?

CPU consumption?

Locks contention/scalability?

Are there more better™ generic userland allocators around?

https://www.alpinelinux.org/
https://musl.libc.org/

Measuring performances

I'm sure someone already did this...

Daan Leijen from Microsoft published mimalloc-bench
Written in bash, but surprisingly nice and clean.

Had some benchmarks, and a couple of allocators.

| simply added moar moar moar!

https://github.com/daanx/mimalloc-bench

Benchmarks

e Real life and real-life-ish workloads:

o redis, ghostscript, z3, lean, rocksdb, gcc(lua), espresso, barnes,

e Tons of academic ones used in various papers:

o cfrac, espresso, larsonN, sh6bench/sh8bench, rbstress, mstress, ...

e Running on every commit via github actions on:
o ubuntu, fedora, alpine and osx.

https://github.com/daanx/mimalloc-bench#current-benchmarks
https://redis.io/
https://www.ghostscript.com/
https://github.com/Z3Prover/z3
https://github.com/leanprover/lean
https://rocksdb.org/
https://github.com/daanx/mimalloc-bench/pull/172
https://en.wikipedia.org/wiki/Espresso_heuristic_logic_minimizer
https://en.wikipedia.org/wiki/Barnes%E2%80%93Hut_simulation
https://github.com/daanx/mimalloc-bench/tree/master/bench/cfrac
https://github.com/daanx/mimalloc-bench/tree/master/bench/espresso
https://github.com/daanx/mimalloc-bench/tree/master/bench/larson
https://github.com/daanx/mimalloc-bench/tree/master/bench/shbench
https://github.com/daanx/mimalloc-bench/tree/master/bench/rbstress
https://github.com/daanx/mimalloc-bench/tree/master/bench/mstress

Benched allocators

dieharder: error-resistant memory allocator
ffmalloc: from the Usenix Security 21 paper
freequard: a Faster Secure Heap Allocator

gquarder: tunable secure allocator by the UTSA.

hoard: one of the first multi-thread scalable allocators.
hardened_malloc: security-focused, from GrapheneOS
isoalloc: isolation-based aiming at providing a
reasonable level of security without sacrificing too
much the performances.

jemalloc: by Jason Evans, now developed at Facebook

and widely used eg. FreeBSD and Firefox

libpas: used by WebKit since 2022

lockfree-malloc: the world's first Web-scale memory
allocator

[talloc: LightweighT Almost Lock-Less Oriented for C++

programs memory allocator

musl: musl’'s memory allocator since 2020
mesh/nomesh: allocator that automatically reduces the

memory footprint of applications

mimalloc/smimalloc: compact general purpose
allocator with excellent performance, used by
UnrealEngine, Azure, Bing, ...

romalloc: 16-byte aligned allocations by Mattias
Jansson at Epic Games, used by Haiku

scalloc: fast, multicore-scalable,
low-fragmentation memory allocator

scudo: used by Fuschia and Android.

slimguadr: secure and memory-efficient.
supermalloc: uses hardware transactional
memory to speed up parallel operations.
snmalloc: concurrent message passing allocator
Intel TBB: from the Thread Building Blocks (TBB)
library

tcmalloc: maintained by the community
tcmalloc: maintained and used by Google.
native: uses the system allocator, usually glibc.

https://github.com/emeryberger/DieHard
https://github.com/bwickman97/ffmalloc
https://www.usenix.org/conference/usenixsecurity21/presentation/wickman
https://github.com/UTSASRG/FreeGuard
https://github.com/UTSASRG/Guarder
https://github.com/emeryberger/Hoard
https://github.com/GrapheneOS/hardened_malloc
https://github.com/struct/isoalloc/
https://github.com/jemalloc/jemalloc
https://github.com/WebKit/WebKit/tree/main/Source/bmalloc/libpas
https://github.com/Begun/lockfree-malloc
https://github.com/r-lyeh-archived/ltalloc
https://musl.libc.org/
https://github.com/plasma-umass/mesh
https://github.com/daanx/mimalloc-bench#current-allocators
https://github.com/microsoft/mimalloc
https://github.com/mjansson/rpmalloc
https://github.com/cksystemsgroup/scalloc
https://www.llvm.org/docs/ScudoHardenedAllocator.html
https://github.com/ssrg-vt/SlimGuard
https://github.com/kuszmaul/SuperMalloc
https://github.com/microsoft/snmalloc
https://github.com/intel/tbb
https://github.com/gperftools/gperftools
https://github.com/google/tcmalloc

Results and shiny graphs

Some sad results

Most allocators are Linux-specific.
Some allocators are glibc-specific.
Some are conferenceware and don’t even compile.

Some were too slow to be included in the CI.
o Some allocators explicitly don’t care about performances.

Some are crashing when running benchmarks.

Side-effect improvements

Caught a crash in isoalloc

Security improvements in snmalloc

Portability improvement in Intel TBB

Caught a compilation issue in rpmalloc

Minor performances improvement in isoalloc
Portability improvements in Google's tcmalloc
Added parallel compilation support in DieHarder

https://github.com/struct/isoalloc/issues/56
https://github.com/microsoft/snmalloc/pull/550
https://github.com/oneapi-src/oneTBB/pull/764
https://github.com/mjansson/rpmalloc/issues/263
https://github.com/struct/isoalloc/commit/049c12e4c2ad5c21a768f7f3873d84bf1106646a
https://github.com/google/tcmalloc/issues/128
https://github.com/google/tcmalloc/issues/125
https://github.com/emeryberger/DieHard/issues/15

Example: Memory used (lower is better)

ghostscript on mimalloc benchmark (memory)

250000 W 100
W 110
B 120
200000
W 130
W 140
150000 W 150
()]
[0]
2 B 160
S
< B 170
B 200
2.0.1
50000 L
0

mimalloc

Example: Pretty graphs (lower is better)

Espresso benchmark

10

seconds

Example: Time taken (lower is better)

isoalloc benchmark (time)

seconds

12500

10000

7500

5000

2500

larsonN

W 100
W 110
B 120
W 121
W 122
W 123
W 124

Measuring security

Spatial and type safety

chunks alignment

elastic objects isolations

checksums for inline metadata

(permanent) size/type based partitioning

randomization: makes everything harder

invalid free detection: overlapping chunks

guard pages: catches large linear-overflows

elastic objects isolations: complicates/mitigates UAF

chunks alignment: mitigates some overlapping chunks
size/type based partitioning: complicates/mitigates UAF

(non global) canaries/cookies: catches some linear overflows
(read-only) OOB metadata: kills all the house-of-... techniques

https://github.com/shellphish/how2heap

Temporal safety

double-free detection: Kills... double-free

sanitization on free: mitigates some infoleaks/UAF

sanitization on allocation: mitigates some infoleaks/UAF
delayed-free: makes UAF exploitation/heap-spraying harder
multi-queues free: makes UAF exploitation/heap-spraying harder
quarantines: makes UAF exploitation/heap-spraying harder

Memory tagging

e Software
o Fat pointers

e Hardware
o Complicated topic, out-of-scope for this talk

https://github.com/struct/isoalloc/blob/master/MEMORY_TAGGING.md
https://research.google/pubs/pub46800/

Exotic stuff and specific mitigations

gigacages

safe-unlink

CPU pinning

lack of free-list

permanent frees

guarded memcpy
PAX_MPROTECT-like

elastic-objects isolation
GWP-ASAN-like sampling
reference-counting: BackupRefPtr
zero-sized allocations special handling
pointer obfuscation/encryption/mangling
dangling-pointers detection: DCScan/PCScan/...

https://github.com/microsoft/snmalloc/blob/main/docs/security/GuardedMemcpy.md
https://pax.grsecurity.net/docs/mprotect.txt
http://go/backuprefptr
https://docs.google.com/document/d/1TNNFa4CwiTSzlqbDkWFyLKLn66lj0Rj_bSwsSaWUJK0/edit#heading=h.w2a3djekr1gm
https://docs.google.com/document/d/1HmxKWcAsQet_348_osf-IgHGMRxO7iexgio7mEuPSmI/edit#heading=h.c0uts5ftkk58

It's almost as if benchmarking security was nontrivial.

Ticking a lot of boxes # a lot of security.

Tight integration allows powerful pervasive mitigations
With arbitrary r/w, ~all bets are off without hardware assistance.
Beware of detection vs. neutering design choices.

The security/performance function is roughly x2:
o Diminishing returns are plenty.
o Waste spend your budget wisely.
o Designing mitigations is hard:
m Beware of the MitiGator!
m Follow halvar’s rule

MitiGrator

https://github.com/daanx/mimalloc-bench/tree/master/bench/security
https://docs.google.com/presentation/d/1y_R6Lkby-10LIIzFMnF4wqzqPWD-eh5RemWy31y4UjE/edit
https://twitter.com/halvarflake/status/1156815950873804800

Now what?

e Add more allocators
o s your favourite one missing?

e Add more (relevant) benchmarks
o ldeas and suggestions are welcome.

e Publish more shiny graphs and data
o What kind of metrics are interesting/relevant?

e Drive adoption of systematic benchmarks forward
o CS papers without code shouldn’t be a thing.

Heavily subjective and biased conclusion

e mimalloc is great
e hardened_malloc or isoalloc if you want “security”
e The default allocator is usually good enough™

~All big software and interpreted languages have their own allocator anyway:

o apache2, nginx, python, java, php, go, firefox, thunderbird, chrome, exim, ...

https://github.com/microsoft/mimalloc
https://github.com/GrapheneOS/hardened_malloc
https://github.com/struct/isoalloc

Thanks!

V)

BLACK ALPS

Sources and cool things to check out

https://qithub.com/daanx/mimalloc-bench
https://github.com/struct/isoalloc/blob/master/ SECURITY COMPARISON.MD
https://downloads.immunityinc.com/infiltrate-archives/webkit heap.pdf
https://security.apple.com/blog/towards-the-next-generation-of-xnu-memory-s

afety/

https://github.com/daanx/mimalloc-bench
https://github.com/struct/isoalloc/blob/master/SECURITY_COMPARISON.MD
https://downloads.immunityinc.com/infiltrate-archives/webkit_heap.pdf
https://security.apple.com/blog/towards-the-next-generation-of-xnu-memory-safety/
https://security.apple.com/blog/towards-the-next-generation-of-xnu-memory-safety/

