
Benchmarking memory
allocators

Julien Voisin — dustri.org

Story time

● My infra at home is running on Alpine Linux, using musl libc.
● Musl libc has its own memory allocator.
● Musl old allocator used to suck apparently.
● Fortunately, musl libc’s malloc-ng is better™.
● But what does better™ actually means?

○ Speed?
○ Security?
○ Simplicity?
○ RAM consumption?
○ CPU consumption?
○ Locks contention/scalability?

● Are there more better™ generic userland allocators around?

https://www.alpinelinux.org/
https://musl.libc.org/

Measuring performances

I’m sure someone already did this…

● Daan Leijen from Microsoft published mimalloc-bench
● Written in bash, but surprisingly nice and clean.
● Had some benchmarks, and a couple of allocators.
● I simply added moar moar moar!

https://github.com/daanx/mimalloc-bench

Benchmarks

● Real life and real-life-ish workloads:
○ redis, ghostscript, z3, lean, rocksdb, gcc(lua), espresso, barnes, ….

● Tons of academic ones used in various papers:
○ cfrac, espresso, larsonN, sh6bench/sh8bench, rbstress, mstress, …

● Running on every commit via github actions on:
○ ubuntu, fedora, alpine and osx.

https://github.com/daanx/mimalloc-bench#current-benchmarks
https://redis.io/
https://www.ghostscript.com/
https://github.com/Z3Prover/z3
https://github.com/leanprover/lean
https://rocksdb.org/
https://github.com/daanx/mimalloc-bench/pull/172
https://en.wikipedia.org/wiki/Espresso_heuristic_logic_minimizer
https://en.wikipedia.org/wiki/Barnes%E2%80%93Hut_simulation
https://github.com/daanx/mimalloc-bench/tree/master/bench/cfrac
https://github.com/daanx/mimalloc-bench/tree/master/bench/espresso
https://github.com/daanx/mimalloc-bench/tree/master/bench/larson
https://github.com/daanx/mimalloc-bench/tree/master/bench/shbench
https://github.com/daanx/mimalloc-bench/tree/master/bench/rbstress
https://github.com/daanx/mimalloc-bench/tree/master/bench/mstress

● dieharder: error-resistant memory allocator
● ffmalloc: from the Usenix Security 21 paper
● freeguard: a Faster Secure Heap Allocator
● guarder: tunable secure allocator by the UTSA.
● hoard: one of the first multi-thread scalable allocators.
● hardened_malloc: security-focused, from GrapheneOS
● isoalloc: isolation-based aiming at providing a

reasonable level of security without sacrificing too
much the performances.

● jemalloc: by Jason Evans, now developed at Facebook
and widely used eg. FreeBSD and Firefox

● libpas: used by WebKit since 2022
● lockfree-malloc: the world's first Web-scale memory

allocator
● ltalloc: LightweighT Almost Lock-Less Oriented for C++

programs memory allocator
● musl: musl’s memory allocator since 2020
● mesh/nomesh: allocator that automatically reduces the

memory footprint of applications

Benched allocators

● mimalloc/smimalloc: compact general purpose
allocator with excellent performance, used by
UnrealEngine, Azure, Bing, …

● rpmalloc: 16-byte aligned allocations by Mattias
Jansson at Epic Games, used by Haiku

● scalloc: fast, multicore-scalable,
low-fragmentation memory allocator

● scudo: used by Fuschia and Android.
● slimguadr: secure and memory-efficient.
● supermalloc: uses hardware transactional

memory to speed up parallel operations.
● snmalloc: concurrent message passing allocator
● Intel TBB: from the Thread Building Blocks (TBB)

library
● tcmalloc: maintained by the community
● tcmalloc: maintained and used by Google.
● native: uses the system allocator, usually glibc.

https://github.com/emeryberger/DieHard
https://github.com/bwickman97/ffmalloc
https://www.usenix.org/conference/usenixsecurity21/presentation/wickman
https://github.com/UTSASRG/FreeGuard
https://github.com/UTSASRG/Guarder
https://github.com/emeryberger/Hoard
https://github.com/GrapheneOS/hardened_malloc
https://github.com/struct/isoalloc/
https://github.com/jemalloc/jemalloc
https://github.com/WebKit/WebKit/tree/main/Source/bmalloc/libpas
https://github.com/Begun/lockfree-malloc
https://github.com/r-lyeh-archived/ltalloc
https://musl.libc.org/
https://github.com/plasma-umass/mesh
https://github.com/daanx/mimalloc-bench#current-allocators
https://github.com/microsoft/mimalloc
https://github.com/mjansson/rpmalloc
https://github.com/cksystemsgroup/scalloc
https://www.llvm.org/docs/ScudoHardenedAllocator.html
https://github.com/ssrg-vt/SlimGuard
https://github.com/kuszmaul/SuperMalloc
https://github.com/microsoft/snmalloc
https://github.com/intel/tbb
https://github.com/gperftools/gperftools
https://github.com/google/tcmalloc

Results and shiny graphs

Some sad results

● Most allocators are Linux-specific.
● Some allocators are glibc-specific.
● Some are conferenceware and don’t even compile.
● Some were too slow to be included in the CI.

○ Some allocators explicitly don’t care about performances.
● Some are crashing when running benchmarks.

Side-effect improvements

● Caught a crash in isoalloc
● Security improvements in snmalloc
● Portability improvement in Intel TBB
● Caught a compilation issue in rpmalloc
● Minor performances improvement in isoalloc
● Portability improvements in Google's tcmalloc
● Added parallel compilation support in DieHarder

https://github.com/struct/isoalloc/issues/56
https://github.com/microsoft/snmalloc/pull/550
https://github.com/oneapi-src/oneTBB/pull/764
https://github.com/mjansson/rpmalloc/issues/263
https://github.com/struct/isoalloc/commit/049c12e4c2ad5c21a768f7f3873d84bf1106646a
https://github.com/google/tcmalloc/issues/128
https://github.com/google/tcmalloc/issues/125
https://github.com/emeryberger/DieHard/issues/15

Example: Memory used (lower is better)

Example: Pretty graphs (lower is better)

Example: Time taken (lower is better)

Measuring security

Spatial and type safety

● chunks alignment
● elastic objects isolations
● checksums for inline metadata
● (permanent) size/type based partitioning
● randomization: makes everything harder
● invalid free detection: overlapping chunks
● guard pages: catches large linear-overflows
● elastic objects isolations: complicates/mitigates UAF
● chunks alignment: mitigates some overlapping chunks
● size/type based partitioning: complicates/mitigates UAF
● (non global) canaries/cookies: catches some linear overflows
● (read-only) OOB metadata: kills all the house-of-… techniques
● …

https://github.com/shellphish/how2heap

Temporal safety

● double-free detection: kills… double-free
● sanitization on free: mitigates some infoleaks/UAF
● sanitization on allocation: mitigates some infoleaks/UAF
● delayed-free: makes UAF exploitation/heap-spraying harder
● multi-queues free: makes UAF exploitation/heap-spraying harder
● quarantines: makes UAF exploitation/heap-spraying harder
● …

Memory tagging

● Software
○ Fat pointers

● Hardware
○ Complicated topic, out-of-scope for this talk

https://github.com/struct/isoalloc/blob/master/MEMORY_TAGGING.md
https://research.google/pubs/pub46800/

Exotic stuff and specific mitigations

● gigacages
● safe-unlink
● CPU pinning
● lack of free-list
● permanent frees
● guarded memcpy
● PAX_MPROTECT-like
● elastic-objects isolation
● GWP-ASAN-like sampling
● reference-counting: BackupRefPtr
● zero-sized allocations special handling
● pointer obfuscation/encryption/mangling
● dangling-pointers detection: DCScan/PCScan/…
● …

https://github.com/microsoft/snmalloc/blob/main/docs/security/GuardedMemcpy.md
https://pax.grsecurity.net/docs/mprotect.txt
http://go/backuprefptr
https://docs.google.com/document/d/1TNNFa4CwiTSzlqbDkWFyLKLn66lj0Rj_bSwsSaWUJK0/edit#heading=h.w2a3djekr1gm
https://docs.google.com/document/d/1HmxKWcAsQet_348_osf-IgHGMRxO7iexgio7mEuPSmI/edit#heading=h.c0uts5ftkk58

It’s almost as if benchmarking security was nontrivial.

● Ticking a lot of boxes ≠ a lot of security.
● Tight integration allows powerful pervasive mitigations
● With arbitrary r/w, ~all bets are off without hardware assistance.
● Beware of detection vs. neutering design choices.
● The security/performance function is roughly x²:

○ Diminishing returns are plenty.
○ Waste spend your budget wisely.
○ Designing mitigations is hard:

■ Beware of the MitiGator!
■ Follow halvar’s rule

https://github.com/daanx/mimalloc-bench/tree/master/bench/security
https://docs.google.com/presentation/d/1y_R6Lkby-10LIIzFMnF4wqzqPWD-eh5RemWy31y4UjE/edit
https://twitter.com/halvarflake/status/1156815950873804800

Now what?

● Add more allocators
○ Is your favourite one missing?

● Add more (relevant) benchmarks
○ Ideas and suggestions are welcome.

● Publish more shiny graphs and data
○ What kind of metrics are interesting/relevant?

● Drive adoption of systematic benchmarks forward
○ CS papers without code shouldn’t be a thing.

Heavily subjective and biased conclusion

● mimalloc is great
● hardened_malloc or isoalloc if you want “security”
● The default allocator is usually good enough™

~All big software and interpreted languages have their own allocator anyway:

○ apache2, nginx, python, java, php, go, firefox, thunderbird, chrome, exim, …

https://github.com/microsoft/mimalloc
https://github.com/GrapheneOS/hardened_malloc
https://github.com/struct/isoalloc

Thanks!

Sources and cool things to check out

● https://github.com/daanx/mimalloc-bench
● https://github.com/struct/isoalloc/blob/master/SECURITY_COMPARISON.MD
● https://downloads.immunityinc.com/infiltrate-archives/webkit_heap.pdf
● https://security.apple.com/blog/towards-the-next-generation-of-xnu-memory-s

afety/

https://github.com/daanx/mimalloc-bench
https://github.com/struct/isoalloc/blob/master/SECURITY_COMPARISON.MD
https://downloads.immunityinc.com/infiltrate-archives/webkit_heap.pdf
https://security.apple.com/blog/towards-the-next-generation-of-xnu-memory-safety/
https://security.apple.com/blog/towards-the-next-generation-of-xnu-memory-safety/

